Dense Frame-to-Model SLAM with an RGB-D Camera

被引:0
|
作者
Ye, Xiaodan [1 ,2 ]
Li, Jianing [1 ,2 ]
Wang, Lianghao [1 ,2 ,3 ]
Li, Dongxiao [1 ,2 ]
Zhang, Ming [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou, Zhejiang, Peoples R China
[2] Zhejiang Prov Key Lab Informat Proc Commun & Netw, Hangzhou, Zhejiang, Peoples R China
[3] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Frame-to-model; Dense; RGB-D; Graph optimization;
D O I
10.1007/978-3-319-77380-3_56
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a dense frame-to-model Simultaneous Localization And Mapping (SLAM) with an RGB-D camera is proposed, which achieves a more accurate trajectory in contrast to traditional frame-to-model methods. In the frontend, dense photometric information and geometric information are combined to perform a more robust tracking. In the backend, we add volume to loop closure detection to reject false loop. A novel volume-camera pose graph is proposed to effectively reduce drift. Experimental results on some RGB-D SLAM datasets show a reduction of global trajectory error by 18.60% in comparison to Kinituous, 84.43% in comparison to Kinfu.
引用
收藏
页码:588 / 597
页数:10
相关论文
共 50 条
  • [1] Dense RGB-D SLAM with Multiple Cameras
    Meng, Xinrui
    Gao, Wei
    Hu, Zhanyi
    SENSORS, 2018, 18 (07)
  • [2] Dense Visual SLAM for RGB-D Cameras
    Kerl, Christian
    Sturm, Juergen
    Cremers, Daniel
    2013 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2013, : 2100 - 2106
  • [3] Dense RGB-D SLAM with Planes Detection and Mapping
    Pan, Liang
    Wang, Pengfei
    Cao, Jiawei
    Chew, Chee-Meng
    45TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2019), 2019, : 5192 - 5197
  • [4] roboSLAM: Dense RGB-D SLAM for Humanoid Robots
    Hourdakis, Emmanouil
    Piperakis, Stylianos
    Trahanias, Panos
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 2224 - 2231
  • [5] Adaptive algorithm for the SLAM design with a RGB-D camera
    Ortiz-Gonzalez, Antonio
    Kober, Vitaly
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XLII, 2019, 11137
  • [6] Online frame-to-model pipeline to 3D reconstruction with depth cameras using RGB-D information
    Dornelles, Thiago
    Jung, Claudio Rosito
    2020 33RD SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2020), 2020, : 132 - 139
  • [7] Using a RGB-D camera for 6DoF SLAM
    Munoz, Jose
    Pastor, Daniel
    Gil, Pablo
    Puente, Santiago
    Cazorla, Miguel
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2012, 248 : 143 - +
  • [8] Dense Piecewise Planar RGB-D SLAM for Indoor Environments
    Le, Phi-Hung
    Kosecka, Jana
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 4944 - 4949
  • [9] RGB-D dense SLAM with keyframe-based method
    Fu, Xingyin
    Zhu, Feng
    Wu, Qingxiao
    Sun, Yunlei
    THREE-DIMENSIONAL IMAGE ACQUISITION AND DISPLAY TECHNOLOGY AND APPLICATIONS, 2018, 10845
  • [10] PoseFusion: Dense RGB-D SLAM in Dynamic Human Environments
    Zhang, Tianwei
    Nakamura, Yoshihiko
    PROCEEDINGS OF THE 2018 INTERNATIONAL SYMPOSIUM ON EXPERIMENTAL ROBOTICS, 2020, 11 : 772 - 780