Dense Frame-to-Model SLAM with an RGB-D Camera

被引:0
|
作者
Ye, Xiaodan [1 ,2 ]
Li, Jianing [1 ,2 ]
Wang, Lianghao [1 ,2 ,3 ]
Li, Dongxiao [1 ,2 ]
Zhang, Ming [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou, Zhejiang, Peoples R China
[2] Zhejiang Prov Key Lab Informat Proc Commun & Netw, Hangzhou, Zhejiang, Peoples R China
[3] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Frame-to-model; Dense; RGB-D; Graph optimization;
D O I
10.1007/978-3-319-77380-3_56
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a dense frame-to-model Simultaneous Localization And Mapping (SLAM) with an RGB-D camera is proposed, which achieves a more accurate trajectory in contrast to traditional frame-to-model methods. In the frontend, dense photometric information and geometric information are combined to perform a more robust tracking. In the backend, we add volume to loop closure detection to reject false loop. A novel volume-camera pose graph is proposed to effectively reduce drift. Experimental results on some RGB-D SLAM datasets show a reduction of global trajectory error by 18.60% in comparison to Kinituous, 84.43% in comparison to Kinfu.
引用
收藏
页码:588 / 597
页数:10
相关论文
共 50 条
  • [21] FlowFusion: Dynamic Dense RGB-D SLAM Based on Optical Flow
    Zhang, Tianwei
    Zhang, Huayan
    Li, Yang
    Nakamura, Yoshihiko
    Zhang, Lei
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 7322 - 7328
  • [22] Local optimized and scalable frame-to-model SLAM
    Li, Jia-Ning
    Wang, Liang-Hao
    Li, Yang
    Zhang, Jun-Fei
    Li, Dong-Xiao
    Zhang, Ming
    MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (14) : 8675 - 8694
  • [23] On-Board Visual SLAM on a UGV Using a RGB-D Camera
    Aguilar, Wilbert G.
    Rodriguez, Guillermo A.
    Alvarez, Leandro
    Sandoval, Sebastian
    Quisaguano, Fernando
    Limaico, Alex
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2017, PT III, 2017, 10464 : 298 - 308
  • [24] An ORB Based Visual SLAM System by RGB-D Camera of LeTV
    Fan, Yang
    Ming, Li
    2017 9TH INTERNATIONAL CONFERENCE ON ADVANCED INFOCOMM TECHNOLOGY (ICAIT 2017), 2017, : 406 - 410
  • [25] RoDyn-SLAM: Robust Dynamic Dense RGB-D SLAM With Neural Radiance Fields
    Jiang, Haochen
    Xu, Yueming
    Li, Kejie
    Feng, Jianfeng
    Zhang, Li
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (09): : 7509 - 7516
  • [26] Robust Indoor SLAM based on Pedestrian Recognition by Using RGB-D Camera
    Ding, Zhaotong
    Huang, Ran
    Hu, Biao
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 292 - 297
  • [27] Survey and Evaluation of RGB-D SLAM
    Zhang, Shishun
    Zheng, Longyu
    Tao, Wenbing
    IEEE ACCESS, 2021, 9 : 21367 - 21387
  • [28] Visual SLAM with RGB-D Cameras
    Jin, Qiongyao
    Liu, Yungang
    Man, Yongchao
    Li, Fengzhong
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 4072 - 4077
  • [29] Image-database SLAM of an Indoor Robot using RGB-D camera
    Kao, Wei-Wen
    Ciou, Jing-Jhou
    Lee, Chi-Cheng
    PROCEEDINGS OF THE ION 2015 PACIFIC PNT MEETING, 2015, : 337 - 343
  • [30] A robust RGB-D SLAM algorithm
    Hu, Gibson
    Huang, Shoudong
    Zhao, Liang
    Alempijevic, Alen
    Dissanayake, Gamini
    2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 1714 - 1719