Dense Frame-to-Model SLAM with an RGB-D Camera

被引:0
|
作者
Ye, Xiaodan [1 ,2 ]
Li, Jianing [1 ,2 ]
Wang, Lianghao [1 ,2 ,3 ]
Li, Dongxiao [1 ,2 ]
Zhang, Ming [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou, Zhejiang, Peoples R China
[2] Zhejiang Prov Key Lab Informat Proc Commun & Netw, Hangzhou, Zhejiang, Peoples R China
[3] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Frame-to-model; Dense; RGB-D; Graph optimization;
D O I
10.1007/978-3-319-77380-3_56
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a dense frame-to-model Simultaneous Localization And Mapping (SLAM) with an RGB-D camera is proposed, which achieves a more accurate trajectory in contrast to traditional frame-to-model methods. In the frontend, dense photometric information and geometric information are combined to perform a more robust tracking. In the backend, we add volume to loop closure detection to reject false loop. A novel volume-camera pose graph is proposed to effectively reduce drift. Experimental results on some RGB-D SLAM datasets show a reduction of global trajectory error by 18.60% in comparison to Kinituous, 84.43% in comparison to Kinfu.
引用
收藏
页码:588 / 597
页数:10
相关论文
共 50 条
  • [41] Based on Nonlinear Optimization and Keyframes Dense Mapping Method for RGB-D SLAM System
    Gao, Yucheng
    Lin, Dongyun
    Tian, Jun
    Zou, Chaosheng
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 5196 - 5200
  • [42] Multi-robot collaborative SLAM and scene reconstruction based on RGB-D camera
    Ma, Tianyun
    Zhang, Tao
    Li, Shaopeng
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 139 - 144
  • [43] Graph-Based Visual SLAM and Visual Odometry Using an RGB-D Camera
    Kluessendorff, Jan Helge
    Hartmann, Jan
    Forouher, Dariush
    Maehle, Erik
    2013 9TH INTERNATIONAL WORKSHOP ON ROBOT MOTION AND CONTROL (ROMOCO), 2013, : 288 - 293
  • [44] SLAM Algorithm with Point-Line Feature Fusion Based on RGB-D Camera
    Ma, Li
    Xu, Mengcong
    Zhou, Lei
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2022, 50 (02): : 76 - 83
  • [45] Visual SLAM with a RGB-D Camera on a Quadrotor UAV Using on-Board Processing
    Aguilar, Wilbert G.
    Rodriguez, Guillermo A.
    Alvarez, Leandro
    Sandoval, Sebastian
    Quisaguano, Fernando
    Limaico, Alex
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT II, 2017, 10306 : 596 - 606
  • [46] BAD SLAM: Bundle Adjusted Direct RGB-D SLAM
    Schops, Thomas
    Sattler, Torsten
    Pollefeys, Marc
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 134 - 144
  • [47] Object Subtraction Planar RGB-D SLAM
    Souto, Leonardo A. V.
    Nascimento, Tiago P.
    PROCEEDINGS OF 13TH LATIN AMERICAN ROBOTICS SYMPOSIUM AND 4TH BRAZILIAN SYMPOSIUM ON ROBOTICS - LARS/SBR 2016, 2016, : 19 - 24
  • [48] Linear RGB-D SLAM for Structured Environments
    Joo, Kyungdon
    Kim, Pyojin
    Hebert, Martial
    Kweon, In So
    Kim, Hyoun Jin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) : 8403 - 8419
  • [49] A Benchmark for the Evaluation of RGB-D SLAM Systems
    Sturm, Juergen
    Engelhard, Nikolas
    Endres, Felix
    Burgard, Wolfram
    Cremers, Daniel
    2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 573 - 580
  • [50] Building Dense Reflectance Maps of Indoor Environments using an RGB-D Camera
    Krawez, Michael
    Caselitz, Tim
    Buescher, Daniel
    Van Loock, Mark
    Burgard, Wolfram
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 3210 - 3217