Dense Frame-to-Model SLAM with an RGB-D Camera

被引:0
|
作者
Ye, Xiaodan [1 ,2 ]
Li, Jianing [1 ,2 ]
Wang, Lianghao [1 ,2 ,3 ]
Li, Dongxiao [1 ,2 ]
Zhang, Ming [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou, Zhejiang, Peoples R China
[2] Zhejiang Prov Key Lab Informat Proc Commun & Netw, Hangzhou, Zhejiang, Peoples R China
[3] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Frame-to-model; Dense; RGB-D; Graph optimization;
D O I
10.1007/978-3-319-77380-3_56
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a dense frame-to-model Simultaneous Localization And Mapping (SLAM) with an RGB-D camera is proposed, which achieves a more accurate trajectory in contrast to traditional frame-to-model methods. In the frontend, dense photometric information and geometric information are combined to perform a more robust tracking. In the backend, we add volume to loop closure detection to reject false loop. A novel volume-camera pose graph is proposed to effectively reduce drift. Experimental results on some RGB-D SLAM datasets show a reduction of global trajectory error by 18.60% in comparison to Kinituous, 84.43% in comparison to Kinfu.
引用
收藏
页码:588 / 597
页数:10
相关论文
共 50 条
  • [31] An improved RGB-D SLAM algorithm
    Sun, Wenchi
    Wang, Shunyan
    Wu, Jiancai
    Du, Xin
    2017 IEEE 2ND ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2017, : 1425 - 1428
  • [32] RGB-D SLAM with Structural Regularities
    Li, Yanyan
    Yunus, Raza
    Brasch, Nikolas
    Navab, Nassir
    Tombari, Federico
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 11581 - 11587
  • [33] Research on loop-closure detection in SLAM based on RGB-D camera
    Lin JunQin
    Chen ZhiHong
    Wang YanBo
    Liu JiaYu
    Liao Yu
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 7841 - 7845
  • [34] IMU aided RGB-D SLAM
    Qayyum, Usman
    Ahsan, Qaisar
    Mahmood, Zahid
    PROCEEDINGS OF 2017 14TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2017, : 337 - 341
  • [35] Improved RGB-D Camera-based SLAM System for Mobil Robots
    Somlyai, Laszlo
    Vamossy, Zoltan
    ACTA POLYTECHNICA HUNGARICA, 2024, 21 (08) : 107 - 124
  • [36] An Evaluation of the RGB-D SLAM System
    Endres, Felix
    Hess, Juergen
    Engelhard, Nikolas
    Sturm, Juergen
    Cremers, Daniel
    Burgard, Wolfram
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 1691 - 1696
  • [37] Autonomous Flight Using RGB-D SLAM with a Monocular Onboard Camera Only
    Munguia-Silva, Roberto
    Martinez-Carranza, Jose
    2018 28TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND COMPUTERS (CONIELECOMP), 2018, : 200 - 206
  • [38] Real-time SLAM Using an RGB-D Camera For Mobile Robots
    Hao, Chung Kuo
    Mayer, N. Michael
    2013 CACS INTERNATIONAL AUTOMATIC CONTROL CONFERENCE (CACS), 2013, : 356 - +
  • [39] SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM
    Keetha, Nikhil
    Karhade, Jay
    Jatavallabhula, Krishna Murthy
    Yang, Gengshan
    Scherer, Sebastian
    Ramanan, Deva
    Luiten, Jonathon
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 21357 - 21366
  • [40] Towards Dense Moving Object Segmentation based Robust Dense RGB-D SLAM in Dynamic Scenarios
    Wang, Youbing
    Huang, Shoudong
    2014 13TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION (ICARCV), 2014, : 1841 - 1846