Informational Non-Differentiable Entropy and Uncertainty Relations in Complex Systems

被引:11
|
作者
Agop, Maricel [1 ]
Gavrilut, Alina [2 ]
Crumpei, Gabriel [3 ]
Doroftei, Bogdan [4 ]
机构
[1] Gheorghe Asachi Tech Univ Iasi, Dept Phys, Iasi 700050, Romania
[2] Alexandru Ioan Cuza Univ, Fac Math, Iasi 700506, Romania
[3] Psychotherapy & Counseling Ctr Iasi, Iasi 700115, Romania
[4] Grigore T Popa Univ Med & Pharm, Origyn Fertil Ctr, Clin Hosp Obstet & Gynaecol, Iasi 700115, Romania
关键词
non-differentiable entropy; informational non-differentiable entropy; informational non-differentiable energy; uncertainty relations; RELATIVITY; TRANSPORT; TIME;
D O I
10.3390/e16116042
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Considering that the movements of complex system entities take place on continuous, but non-differentiable, curves, concepts, like non-differentiable entropy, informational non-differentiable entropy and informational non-differentiable energy, are introduced. First of all, the dynamics equations of the complex system entities (Schrodinger-type or fractal hydrodynamic-type) are obtained. The last one gives a specific fractal potential, which generates uncertainty relations through non-differentiable entropy. Next, the correlation between informational non-differentiable entropy and informational non-differentiable energy implies specific uncertainty relations through a maximization principle of the informational non-differentiable entropy and for a constant value of the informational non-differentiable energy. Finally, for a harmonic oscillator, the constant value of the informational non-differentiable energy is equivalent to a quantification condition.
引用
收藏
页码:6042 / 6058
页数:17
相关论文
共 50 条
  • [41] Lineability of non-differentiable Pettis primitives
    B. Bongiorno
    U. B. Darji
    L. Di Piazza
    Monatshefte für Mathematik, 2015, 177 : 345 - 362
  • [42] INVARIANT MANIFOLDS FOR NON-DIFFERENTIABLE OPERATORS
    Martens, Marco
    Palmisano, Liviana
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (02) : 1101 - 1169
  • [43] Lineability of non-differentiable Pettis primitives
    Bongiorno, B.
    Darji, U. B.
    Di Piazza, L.
    MONATSHEFTE FUR MATHEMATIK, 2015, 177 (03): : 345 - 362
  • [44] ON ASYMMETRICAL DERIVATES OF NON-DIFFERENTIABLE FUNCTIONS
    GARG, KM
    CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (01): : 135 - &
  • [45] SECOND ORDER DUALITY FOR A NON-DIFFERENTIABLE MINIMAX COMPLEX PROGRAMMING WITH GENERALIZED Θ-BONVEXITY
    Huang, Tone-Yau
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (09) : 1547 - 1553
  • [46] A multiplicity result for gradient-type systems with non-differentiable term
    B. E. Breckner
    Cs. Varga
    Acta Mathematica Hungarica, 2008, 118 : 85 - 104
  • [47] Second-order duality for a non-differentiable minimax programming in complex spaces
    Huang, Tone-Yau
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (12) : 2508 - 2519
  • [48] BIFURCATION FOR NON-DIFFERENTIABLE OPERATORS WITH AN APPLICATION TO ELASTICITY
    MCLEOD, JB
    TURNER, REL
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1977, 63 (01) : 1 - 45
  • [49] Non-Differentiable Mechanical Model and Its Implications
    M. Agop
    O. Niculescu
    A. Timofte
    L. Bibire
    A. S. Ghenadi
    A. Nicuta
    C. Nejneru
    G. V. Munceleanu
    International Journal of Theoretical Physics, 2010, 49 : 1489 - 1506
  • [50] Adversarial Variational Optimization of Non-Differentiable Simulators
    Louppe, Gilles
    Hermans, Joeri
    Cranmer, Kyle
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89