Considering that the movements of complex system entities take place on continuous, but non-differentiable, curves, concepts, like non-differentiable entropy, informational non-differentiable entropy and informational non-differentiable energy, are introduced. First of all, the dynamics equations of the complex system entities (Schrodinger-type or fractal hydrodynamic-type) are obtained. The last one gives a specific fractal potential, which generates uncertainty relations through non-differentiable entropy. Next, the correlation between informational non-differentiable entropy and informational non-differentiable energy implies specific uncertainty relations through a maximization principle of the informational non-differentiable entropy and for a constant value of the informational non-differentiable energy. Finally, for a harmonic oscillator, the constant value of the informational non-differentiable energy is equivalent to a quantification condition.
机构:
Univ Pau & Pays Adour, Lab Math & Leur Appliquat Pau, F-64013 Pau, France
Observ Paris, Inst Mecan Celeste & Calcul Ephemerides, F-75014 Paris, FranceUniv Pau & Pays Adour, Lab Math & Leur Appliquat Pau, F-64013 Pau, France
Cresson, Jacky
Greff, Isabelle
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pau & Pays Adour, Lab Math & Leur Appliquat Pau, F-64013 Pau, France
Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, FranceUniv Pau & Pays Adour, Lab Math & Leur Appliquat Pau, F-64013 Pau, France