Informational Non-Differentiable Entropy and Uncertainty Relations in Complex Systems

被引:11
|
作者
Agop, Maricel [1 ]
Gavrilut, Alina [2 ]
Crumpei, Gabriel [3 ]
Doroftei, Bogdan [4 ]
机构
[1] Gheorghe Asachi Tech Univ Iasi, Dept Phys, Iasi 700050, Romania
[2] Alexandru Ioan Cuza Univ, Fac Math, Iasi 700506, Romania
[3] Psychotherapy & Counseling Ctr Iasi, Iasi 700115, Romania
[4] Grigore T Popa Univ Med & Pharm, Origyn Fertil Ctr, Clin Hosp Obstet & Gynaecol, Iasi 700115, Romania
关键词
non-differentiable entropy; informational non-differentiable entropy; informational non-differentiable energy; uncertainty relations; RELATIVITY; TRANSPORT; TIME;
D O I
10.3390/e16116042
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Considering that the movements of complex system entities take place on continuous, but non-differentiable, curves, concepts, like non-differentiable entropy, informational non-differentiable entropy and informational non-differentiable energy, are introduced. First of all, the dynamics equations of the complex system entities (Schrodinger-type or fractal hydrodynamic-type) are obtained. The last one gives a specific fractal potential, which generates uncertainty relations through non-differentiable entropy. Next, the correlation between informational non-differentiable entropy and informational non-differentiable energy implies specific uncertainty relations through a maximization principle of the informational non-differentiable entropy and for a constant value of the informational non-differentiable energy. Finally, for a harmonic oscillator, the constant value of the informational non-differentiable energy is equivalent to a quantification condition.
引用
收藏
页码:6042 / 6058
页数:17
相关论文
共 50 条
  • [31] DIFFERENTIABILITY OF MINIMA OF NON-DIFFERENTIABLE FUNCTIONALS
    GIAQUINTA, M
    GIUSTI, E
    INVENTIONES MATHEMATICAE, 1983, 72 (02) : 285 - 298
  • [32] Reparameterization Gradient for Non-differentiable Models
    Lee, Wonyeol
    Yu, Hangyeol
    Yang, Hongseok
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [33] A method for non-differentiable optimization problems
    Corradi, Gianfranco
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (17) : 3750 - 3761
  • [34] Quantum estimation for non-differentiable models
    Tsuda, Y
    Matsumoto, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (07): : 1593 - 1613
  • [35] Weierstrass's non-differentiable function
    Hardy, G. H.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1916, 17 : 301 - 325
  • [36] A multiplicity result for gradient-type systems with non-differentiable term
    Breckner, B. E.
    Varga, C. S.
    ACTA MATHEMATICA HUNGARICA, 2008, 118 (1-2) : 85 - 104
  • [37] Optimizing Non-Differentiable Metrics for Hashing
    Wei, Yiwen
    Tian, Dayong
    Shi, Jiao
    Lei, Yu
    IEEE ACCESS, 2021, 9 : 14351 - 14357
  • [38] Regularization of derivatives on non-differentiable points
    Prodanov, Dimiter
    EMQM15: EMERGENT QUANTUM MECHANICS 2015, 2016, 701
  • [39] Horizons non-differentiable on a dense set
    Chrusciel, PT
    Galloway, GJ
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 193 (02) : 449 - 470
  • [40] Horizons Non-Differentiable on a Dense Set
    Piotr T. Chruściel
    Gregory J. Galloway
    Communications in Mathematical Physics, 1998, 193 : 449 - 470