Interactive Machine Learning Tool for Clustering in Visual Analytics

被引:7
|
作者
Thrun, Michael [1 ]
Pape, Felix [2 ]
Ultsch, Alfred [1 ]
机构
[1] Philipps Univ Marburg, Databion Res Grp, D-35032 Marburg, Germany
[2] Philipps Univ Marburg, D-35032 Marburg, Germany
关键词
cluster analysis; interactive machine learning; visual analytics; structures;
D O I
10.1109/DSAA49011.2020.00062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering is an important task in knowledge discovery with the goal of finding groups of similar data points in a dataset. Today there are many different approaches to clustering, including methods to incorporate user decisions into the clustering process. Some of these interactive approaches fall into the category of visual analytics and emphasize the power of visualizations to help find clusters manually in various types of datasets or to verify the results of clustering algorithms. The interactive projection-based clustering (IPBC) is an open-source and parameter-free method using user input on interactive visualizations to cluster high-dimensional data. This work introduces the IPBC approach and compares it to the results of accessible visual analytics approaches for clustering, showing that IPBC can outperform them.
引用
收藏
页码:479 / 487
页数:9
相关论文
共 50 条
  • [21] SHIM: Semantic Hierarchical clustering with Interactive Machine learning
    Cao, Fang
    Tu, Yuanwei
    Brown, Eli T.
    2021 IEEE WORKSHOP ON MACHINE LEARNING FROM USER INTERACTIONS (MLUI 2021), 2021, : 12 - 20
  • [22] Interactive visual decision analytics
    2017, IEEE Computer Society (2017-January):
  • [23] Interactive Visual Decision Analytics
    Ebert, David S.
    Fisher, Brian
    Gaither, Kelly
    PROCEEDINGS OF THE 49TH ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (HICSS 2016), 2016, : 1426 - 1426
  • [24] Interactive Visual Decision Analytics
    Ebert, David S.
    Fisher, Brian
    Gaither, Kelly
    PROCEEDINGS OF THE 50TH ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, 2017, : 1371 - 1371
  • [25] Machine Tool Analytics
    Bartles, Dean
    MANUFACTURING ENGINEERING, 2011, 146 (03): : 160 - 160
  • [26] Interactive Visual Clustering
    desJardins, Marie
    MacGlashan, James
    Ferraioli, Julia
    2007 INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, 2007, : 361 - 364
  • [27] AN INTERACTIVE VISUAL ANALYTICS TOOL FOR BIG EARTH OBSERVATION DATA CONTENT ESTIMATION
    Faur, Daniela
    Griparis, Andreea
    Stoica, Adrian
    Mougnaud, Philippe
    Datcu, Mihai
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 9518 - 9521
  • [28] SlicerAstro: A 3-D interactive visual analytics tool for HI data
    Punzo, D.
    van der Hulst, J. M.
    Roerdink, J. B. T. M.
    Fillion-Robin, J. C.
    Yu, L.
    ASTRONOMY AND COMPUTING, 2017, 19 : 45 - 59
  • [29] MILA: A SCORM-Compliant Interactive Learning Analytics Tool for Moodle
    Distante, Damiano
    Villa, Massimo
    Sansone, Nadia
    Faralli, Stefano
    2020 IEEE 20TH INTERNATIONAL CONFERENCE ON ADVANCED LEARNING TECHNOLOGIES (ICALT 2020), 2020, : 169 - 171
  • [30] dpvis: A Visual and Interactive Learning Tool for Dynamic Programming
    Lee, David H.
    Prasad, Aditya
    Vuong, Ramiro Deo-Campo
    Wang, Tianyu
    Han, Eric
    Kempe, David
    PROCEEDINGS OF THE 56TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, SIGCSE TS 2025, VOL 1, 2025, : 645 - 651