Interactive Machine Learning Tool for Clustering in Visual Analytics

被引:7
|
作者
Thrun, Michael [1 ]
Pape, Felix [2 ]
Ultsch, Alfred [1 ]
机构
[1] Philipps Univ Marburg, Databion Res Grp, D-35032 Marburg, Germany
[2] Philipps Univ Marburg, D-35032 Marburg, Germany
关键词
cluster analysis; interactive machine learning; visual analytics; structures;
D O I
10.1109/DSAA49011.2020.00062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering is an important task in knowledge discovery with the goal of finding groups of similar data points in a dataset. Today there are many different approaches to clustering, including methods to incorporate user decisions into the clustering process. Some of these interactive approaches fall into the category of visual analytics and emphasize the power of visualizations to help find clusters manually in various types of datasets or to verify the results of clustering algorithms. The interactive projection-based clustering (IPBC) is an open-source and parameter-free method using user input on interactive visualizations to cluster high-dimensional data. This work introduces the IPBC approach and compares it to the results of accessible visual analytics approaches for clustering, showing that IPBC can outperform them.
引用
收藏
页码:479 / 487
页数:9
相关论文
共 50 条
  • [31] dpvis: A Visual and Interactive Learning Tool for Dynamic Programming
    Lee, David H.
    Prasad, Aditya
    Vuong, Ramiro Deo-Campo
    Wang, Tianyu
    Han, Eric
    Kempe, David
    PROCEEDINGS OF THE 56TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, SIGCSE TS 2025, VOL 2, 2025, : 645 - 651
  • [32] Machine Learning and Visual Analytics for Consulting Business Decision Support
    Cook, Amy
    Wu, Paul
    Mengersen, Kerrie
    2015 BIG DATA VISUAL ANALYTICS (BDVA), 2015,
  • [33] Challenges in Evaluating Interactive Visual Machine Learning Systems
    Boukhelifa, N.
    Bezerianos, A.
    Chang, R.
    Collins, C.
    Drucker, S.
    Endert, A.
    Hullman, J.
    North, C.
    Sedlmair, M.
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2020, 40 (06) : 88 - 96
  • [34] Advances of machine learning in data analytics and visual information processing
    Tanveer, Mohammad
    Sahu, Partha Pratim
    Deka, Bhabesh
    Sur, Arijit
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (28-29) : 34971 - 34971
  • [35] EDAR 4.0: Machine Learning and Visual Analytics for Wastewater Management
    Velasquez, David
    Vallejo, Paola
    Toro, Mauricio
    Odriozola, Juan
    Moreno, Aitor
    Naveran, Gorka
    Giraldo, Michael
    Maiza, Mikel
    Sierra, Basilio
    SUSTAINABILITY, 2024, 16 (09)
  • [36] An Unsupervised Machine Learning Approach for Process Monitoring by Visual Analytics
    Garces, Hugo O.
    Aballay, Bastian
    Rao, Harikrishna Rao Mohan
    Chen, Tongwen
    Shah, Sirish L.
    IFAC PAPERSONLINE, 2024, 58 (14): : 847 - 854
  • [37] Explaining Vulnerabilities to Adversarial Machine Learning through Visual Analytics
    Ma, Yuxin
    Xie, Tiankai
    Li, Jundong
    Maciejewski, Ross
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (01) : 1075 - 1085
  • [38] Design of New Dispersants Using Machine Learning and Visual Analytics
    Martinez, Maria Jimena
    Naveiro, Roi
    Soto, Axel J.
    Talavante, Pablo
    Kim Lee, Shin-Ho
    Gomez Arrayas, Ramon
    Franco, Mario
    Mauleon, Pablo
    Lozano Ordonez, Hector
    Revilla Lopez, Guillermo
    Bernabei, Marco
    Campillo, Nuria E.
    Ponzoni, Ignacio
    POLYMERS, 2023, 15 (05)
  • [39] FAIRVIS: Visual Analytics for Discovering Intersectional Bias in Machine Learning
    Cabrera, Angel Alexander
    Epperson, Will
    Hohman, Fred
    Kahng, Minsuk
    Morgenstern, Jamie
    Chau, Duen Horng
    2019 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2019, : 46 - 56
  • [40] Advances of machine learning in data analytics and visual information processing
    Multimedia Tools and Applications, 2021, 80 : 34971 - 34971