AN INTERACTIVE VISUAL ANALYTICS TOOL FOR BIG EARTH OBSERVATION DATA CONTENT ESTIMATION

被引:0
|
作者
Faur, Daniela [1 ]
Griparis, Andreea [1 ]
Stoica, Adrian [3 ]
Mougnaud, Philippe [4 ]
Datcu, Mihai [1 ,2 ]
机构
[1] Univ Politehn Bucuresti, Romania Res Ctr Spatial Informat, CEOSpaceTech, Bucharest, Romania
[2] German Aerosp Ctr, Oberpfaffenhofen, Germany
[3] Terrasigna, Bucharest, Romania
[4] European Space Agcy, Esrin, Rome, Italy
关键词
visual analytics; data visualization; quantitative measurements; Earth observation data content;
D O I
10.1109/igarss.2019.8898825
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper introduces a tool designed to provide an innovative and insightful way of exploring Earth observation data content beyond visualization, by addressing a visual analytics process. The considered framework combines machine learning and visualization techniques, empowered through human interaction, to gain knowledge from the data. The proposed tool- eVADE leverages the methodologies developed in the fields of information retrieval, data mining and knowledge representation by the means of a visual analytics component. eVADE increases users capability to understand and extract meaningful semantic clusters together with quantitative measurements, presented in a suggestive visual way.
引用
收藏
页码:9518 / 9521
页数:4
相关论文
共 50 条
  • [1] Improving Big Data Visual Analytics with Interactive Virtual Reality
    Moran, Andrew
    Gadepally, Vijay
    Hubbell, Matthew
    Kepner, Jeremy
    2015 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2015,
  • [2] Visual Analytics with Unparalleled Variety Scaling for Big Earth Data
    Yu, Lina
    Rilee, Michael L.
    Pan, Yu
    Zhu, Feiyu
    Kuo, Kwo-Sen
    Yu, Hongfeng
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 514 - 521
  • [3] THE DYDAS - "DYNAMIC DATA ANALYTICS SERVICES" PLATFORM FOR HPC BIG DATA ANALYTICS OF EARTH OBSERVATION AND GEOSPATIAL DATA
    Picchiani, M.
    Maranesi, M.
    Mastrucci, M.
    Coltea, I. G.
    Pompei, G.
    Di Giacomo, L.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 4011 - 4014
  • [4] Interactive Visual Analytics for Sensemaking with Big Text
    Dowling, Michelle
    Wycoff, Nathan
    Mayer, Brian
    Wenskovitch, John
    Leman, Scotland
    House, Leanna
    Polys, Nicholas
    North, Chris
    Hauck, Peter
    BIG DATA RESEARCH, 2019, 16 : 49 - 58
  • [5] Big data visual analytics for exploratory earth system simulation analysis
    Steed, Chad A.
    Ricciuto, Daniel M.
    Shipman, Galen
    Smith, Brian
    Thornton, Peter E.
    Wang, Dali
    Shi, Xiaoying
    Williams, Dean N.
    COMPUTERS & GEOSCIENCES, 2013, 61 : 71 - 82
  • [6] Interactive big data visualization and analytics
    Auber, David
    Bikakis, Nikos
    Chrysanthis, Panos K.
    Papastefanatosd, George
    Sharaf, Mohamed
    BIG DATA RESEARCH, 2024, 36
  • [7] Interactive big data visualization and analytics
    Auber, David
    Bikakis, Nikos
    Chrysanthis, Panos K.
    Papastefanatos, George
    Sharaf, Mohamed
    Big Data Research, 2024, 36
  • [8] Interactive visual analytics tool for multidimensional quantitative and categorical data analysis
    Shahid, Muhammad Laiq Ur Rahman
    Molchanov, Vladimir
    Mir, Junaid
    Shaukat, Furqan
    Linsen, Lars
    INFORMATION VISUALIZATION, 2020, 19 (03) : 234 - 246
  • [9] Big Earth data analytics: a survey
    Yang, Chaowei
    Yu, Manzhu
    Li, Yun
    Hu, Fei
    Jiang, Yongyao
    Liu, Qian
    Sha, Dexuan
    Xu, Mengchao
    Gu, Juan
    BIG EARTH DATA, 2019, 3 (02) : 83 - 107
  • [10] An Intelligent Visual Big Data Analytics Framework for Supporting Interactive Exploration and Visualization of Big OLAP Cubes
    Ordonez, Carlos
    Chen, Zhibo
    Cuzzocrea, Alfredo
    Garcia-Garcia, Javier
    2020 24TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV 2020), 2020, : 421 - 427