AN INTERACTIVE VISUAL ANALYTICS TOOL FOR BIG EARTH OBSERVATION DATA CONTENT ESTIMATION

被引:0
|
作者
Faur, Daniela [1 ]
Griparis, Andreea [1 ]
Stoica, Adrian [3 ]
Mougnaud, Philippe [4 ]
Datcu, Mihai [1 ,2 ]
机构
[1] Univ Politehn Bucuresti, Romania Res Ctr Spatial Informat, CEOSpaceTech, Bucharest, Romania
[2] German Aerosp Ctr, Oberpfaffenhofen, Germany
[3] Terrasigna, Bucharest, Romania
[4] European Space Agcy, Esrin, Rome, Italy
关键词
visual analytics; data visualization; quantitative measurements; Earth observation data content;
D O I
10.1109/igarss.2019.8898825
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper introduces a tool designed to provide an innovative and insightful way of exploring Earth observation data content beyond visualization, by addressing a visual analytics process. The considered framework combines machine learning and visualization techniques, empowered through human interaction, to gain knowledge from the data. The proposed tool- eVADE leverages the methodologies developed in the fields of information retrieval, data mining and knowledge representation by the means of a visual analytics component. eVADE increases users capability to understand and extract meaningful semantic clusters together with quantitative measurements, presented in a suggestive visual way.
引用
收藏
页码:9518 / 9521
页数:4
相关论文
共 50 条
  • [21] TEVisE: An Interactive Visual Analytics Tool to Explore Evolution of Keywords’ Relations in Tweet Data
    Humayoun, Shah Rukh
    Mansour, Ibrahim
    AlTarawneh, Ragaad
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2021, 12934 LNCS : 579 - 599
  • [22] TEVisE: An Interactive Visual Analytics Tool to Explore Evolution of Keywords' Relations in Tweet Data
    Humayoun, Shah Rukh
    Mansour, Ibrahim
    AlTarawneh, Ragaad
    HUMAN-COMPUTER INTERACTION, INTERACT 2021, PT III, 2021, 12934 : 579 - 599
  • [23] Histogram cube: towards lightweight interactive spatiotemporal aggregation of big earth observation data
    Li, Jiyuan
    Meng, Lingkui
    Zhang, Miao
    Jiang, Zhou
    Jin, Weihang
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2023, 16 (02) : 4646 - 4667
  • [24] INTERACTIVE VISUAL ANALYTICS ON BIG DATA: TABLEAU VS D3.JS']JS
    Nair, Lekha R.
    Shetty, Sujala D.
    Shetty, Siddhanth D.
    JOURNAL OF E-LEARNING AND KNOWLEDGE SOCIETY, 2016, 12 (04): : 139 - 150
  • [25] QryGraph: A Graphical Tool for Big Data Analytics
    Schmid, Sanny
    Gerostathopoulos, Ilias
    Prehofer, Christian
    2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 4028 - 4033
  • [26] Visual Context Learning with Big Data Analytics
    Chandrashekar, Mayanka
    Lee, Yugyung
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2016, : 600 - 607
  • [27] Visual Analytics for Big Data using R
    Nasridinov, Aziz
    Park, Young-Ho
    2013 IEEE THIRD INTERNATIONAL CONFERENCE ON CLOUD AND GREEN COMPUTING (CGC 2013), 2013, : 564 - 565
  • [28] Big Data Visual Analytics with Parallel Coordinates
    Heinrich, Julian
    Broeksema, Bertjan
    2015 BIG DATA VISUAL ANALYTICS (BDVA), 2015,
  • [29] A Visual Analytics Framework for Big Spatiotemporal Data
    Wang, Shaohua
    Zhong, Ershun
    Cai, Wenwen
    Zhou, Qiang
    Lu, Hao
    Gu, Yongquan
    Yun, Weiying
    Hu, Zhongnan
    Long, Liang
    PROCEEDINGS OF THE 2ND ACM SIGSPATIAL INTERNATIONAL WORKSHOP ON ANALYTICS FOR LOCAL EVENTS AND NEWS (LENS 2018), 2018,
  • [30] Big Data Exploration through Visual Analytics
    Abousalh-Neto, Nascif A.
    Kazgan, Sumeyye
    2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2012, : 285 - 286