AN INTERACTIVE VISUAL ANALYTICS TOOL FOR BIG EARTH OBSERVATION DATA CONTENT ESTIMATION

被引:0
|
作者
Faur, Daniela [1 ]
Griparis, Andreea [1 ]
Stoica, Adrian [3 ]
Mougnaud, Philippe [4 ]
Datcu, Mihai [1 ,2 ]
机构
[1] Univ Politehn Bucuresti, Romania Res Ctr Spatial Informat, CEOSpaceTech, Bucharest, Romania
[2] German Aerosp Ctr, Oberpfaffenhofen, Germany
[3] Terrasigna, Bucharest, Romania
[4] European Space Agcy, Esrin, Rome, Italy
关键词
visual analytics; data visualization; quantitative measurements; Earth observation data content;
D O I
10.1109/igarss.2019.8898825
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper introduces a tool designed to provide an innovative and insightful way of exploring Earth observation data content beyond visualization, by addressing a visual analytics process. The considered framework combines machine learning and visualization techniques, empowered through human interaction, to gain knowledge from the data. The proposed tool- eVADE leverages the methodologies developed in the fields of information retrieval, data mining and knowledge representation by the means of a visual analytics component. eVADE increases users capability to understand and extract meaningful semantic clusters together with quantitative measurements, presented in a suggestive visual way.
引用
收藏
页码:9518 / 9521
页数:4
相关论文
共 50 条
  • [41] An Interactive Visual System for Data Analytics of Social Media
    Zhang, Yi
    Li, Zhaohui
    Xi, Dewei
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT III, 2022, 13157 : 81 - 100
  • [42] From Big Data to Big Information and Big Knowledge: the Case of Earth Observation Data
    Bereta, Konstantina
    Koubarakis, Manolis
    Manegold, Stefan
    Stamoulis, George
    Demir, Beguem
    CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 2293 - 2294
  • [43] Epiviz: Interactive visual analytics for functional genomics data
    Chelaru F.
    Smith L.
    Goldstein N.
    Bravo H.C.
    Nature Methods, 2014, 11 (9) : 938 - 940
  • [44] Interactive Visual Analytics Application for Spatiotemporal Movement Data
    Guan Yifei
    Seong, Kam Tin
    2017 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2017, : 195 - 196
  • [45] Stewardship and analysis of big Earth observation data
    Wang, Lizhe
    Yan, Jining
    BIG EARTH DATA, 2020, 4 (04) : 349 - 352
  • [46] BigDebug: Interactive Debugger for Big Data Analytics in Apache Spark
    Gulzar, Muhammad Ali
    Interlandi, Matteo
    Condie, Tyson
    Kim, Miryung
    FSE'16: PROCEEDINGS OF THE 2016 24TH ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF SOFTWARE ENGINEERING, 2016, : 1033 - 1037
  • [47] Agile Visual Analytics for Banking Cyber "Big Data"
    Jonker, David
    Langevin, Scott
    Schretlen, Peter
    Canfield, Casey
    2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2012, : 299 - 300
  • [48] Big data and visual analytics in anaesthesia and health care
    Simpao, A. F.
    Ahumada, L. M.
    Rehman, M. A.
    BRITISH JOURNAL OF ANAESTHESIA, 2015, 115 (03) : 350 - 356
  • [49] A review of infrastructure applications for visual analytics the big data
    Cao, Xiufeng
    Gao, Shu
    Wang, Yan
    Energy Education Science and Technology Part A: Energy Science and Research, 2014, 32 (05): : 4219 - 4226
  • [50] SoDA: Dynamic Visual Analytics of Big Social Data
    Hassan, Sabri
    Saenger, Johannes
    Pernul, Guenther
    2014 INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2014, : 183 - 188