Irreversible port-Hamiltonian formulation of non-isothermal electromechanical systems with hysteresis

被引:2
|
作者
Ramirez, Hector [1 ]
Le Gorrec, Yann [1 ]
Calchand, Nandish [2 ]
机构
[1] Univ Bourgogne Franche Comte, FEMTO ST UMR CNRS 6174, Dept AS2M, 24 Rue Savary, F-25000 Besancon, France
[2] Tenneco Automot Europe Bvba, IZ Schurhovenveld 1420, B-3800 St Truiden, Belgium
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 03期
关键词
Port-Hamiltonian system; irreversible thermodynamics; hysteresis; micro-mechatronics; COMPLEX FLUIDS; DYNAMICS; THERMODYNAMICS;
D O I
10.1016/j.ifacol.2018.06.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An irreversible port-Hamiltonian system (IPHS) representation of non-isothermal electromechanical systems with hysteresis is proposed. By representing the hysterisis through hysterons interconnected with the mechanical and electrical components, it is shown that the hysteresis behaves as an irreversible process. This is elegantly captured by the IPHS structure and makes it possible to isolate the different irreversible phenomena of the overall system. Furthermore, it is shown that in general an electromechanical system with hysteresis corresponds to a reversible-IPHS, i.e., the combination of a conservative Hamiltonian system with an irreversible one defined with respect to the same Hamiltonian. A micro-mechatronic example is used to illustrate the approach. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:19 / 24
页数:6
相关论文
共 50 条
  • [31] Linear port-Hamiltonian descriptor systems
    Beattie, Christopher
    Mehrmann, Volker
    Xu, Hongguo
    Zwart, Hans
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2018, 30 (04)
  • [32] PORT-HAMILTONIAN SYSTEMS THEORY AND MONOTONICITY
    Camlibel, M. K.
    Van der Schaftdagger, A. J.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (04) : 2193 - 2221
  • [33] On the stability of port-Hamiltonian descriptor systems
    Gernandt, Hannes
    Haller, Frederic E.
    IFAC PAPERSONLINE, 2021, 54 (19): : 137 - 142
  • [34] OPTIMAL ROBUSTNESS OF PORT-HAMILTONIAN SYSTEMS
    Mehrmann, Volker
    Van Dooren, Paul M.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (01) : 134 - 151
  • [35] Dissipative port-Hamiltonian Formulation of Maxwell Viscoelastic Fluids
    Mora, Luis A.
    Le Gorrec, Yann
    Ramirez, Hector
    Yuz, Juan
    Maschke, Bernhard
    IFAC PAPERSONLINE, 2021, 54 (14): : 430 - 435
  • [36] A STRUCTURAL OBSERVATION ON PORT-HAMILTONIAN SYSTEMS
    Picard, Rainer H.
    Trostorff, Sascha
    Watson, Bruce
    Waurick, Marcus
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (02) : 511 - 535
  • [37] Discrete stochastic port-Hamiltonian systems
    Cordoni, Francesco Giuseppe
    Di Persio, Luca
    Muradore, Riccardo
    AUTOMATICA, 2022, 137
  • [38] Generalized port-Hamiltonian DAE systems
    van der Schaft, Arjan
    Maschke, Bernhard
    SYSTEMS & CONTROL LETTERS, 2018, 121 : 31 - 37
  • [39] On Energy Conversion in Port-Hamiltonian Systems
    van der Schaft, Arjan
    Jeltsema, Dimitri
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 2421 - 2427
  • [40] Decomposition of Linear Port-Hamiltonian Systems
    Hoeffner, K.
    Guay, M.
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 3686 - 3691