Irreversible port-Hamiltonian formulation of non-isothermal electromechanical systems with hysteresis

被引:2
|
作者
Ramirez, Hector [1 ]
Le Gorrec, Yann [1 ]
Calchand, Nandish [2 ]
机构
[1] Univ Bourgogne Franche Comte, FEMTO ST UMR CNRS 6174, Dept AS2M, 24 Rue Savary, F-25000 Besancon, France
[2] Tenneco Automot Europe Bvba, IZ Schurhovenveld 1420, B-3800 St Truiden, Belgium
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 03期
关键词
Port-Hamiltonian system; irreversible thermodynamics; hysteresis; micro-mechatronics; COMPLEX FLUIDS; DYNAMICS; THERMODYNAMICS;
D O I
10.1016/j.ifacol.2018.06.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An irreversible port-Hamiltonian system (IPHS) representation of non-isothermal electromechanical systems with hysteresis is proposed. By representing the hysterisis through hysterons interconnected with the mechanical and electrical components, it is shown that the hysteresis behaves as an irreversible process. This is elegantly captured by the IPHS structure and makes it possible to isolate the different irreversible phenomena of the overall system. Furthermore, it is shown that in general an electromechanical system with hysteresis corresponds to a reversible-IPHS, i.e., the combination of a conservative Hamiltonian system with an irreversible one defined with respect to the same Hamiltonian. A micro-mechatronic example is used to illustrate the approach. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:19 / 24
页数:6
相关论文
共 50 条
  • [41] Notch filters for port-Hamiltonian systems
    Dirksz, D. A.
    Scherpen, J. M. A.
    van der Schaft, A. J.
    Steinbuch, M.
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 238 - 243
  • [42] Learning port-Hamiltonian Systems—Algorithms
    V. Salnikov
    A. Falaize
    D. Lozienko
    Computational Mathematics and Mathematical Physics, 2023, 63 : 126 - 134
  • [43] Notch Filters for Port-Hamiltonian Systems
    Dirksz, D. A.
    Scherpen, J. M. A.
    van der Schaft, A. J.
    Steinbuch, M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (09) : 2440 - 2445
  • [44] Reinforcement Learning for Port-Hamiltonian Systems
    Sprangers, Olivier
    Babuska, Robert
    Nageshrao, Subramanya P.
    Lopes, Gabriel A. D.
    IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (05) : 1003 - 1013
  • [45] Learnability of Linear Port-Hamiltonian Systems
    Ortega, Juan-Pablo
    Yin, Daiying
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 56
  • [46] Port-Hamiltonian Formulation and Analysis of the LuGre Friction Model
    Koopman, Johan
    Jeltsema, Dimitri
    Verhaegen, Michel
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 3181 - 3186
  • [47] Model Reduction for a Port-Hamiltonian Formulation of the Euler Equations
    Hauschild, Sarah-Alexa
    Marheineke, Nicole
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI, 2022, 39 : 1 - 7
  • [48] On the passivity based control of irreversible processes: A port-Hamiltonian approach
    Ramirez, Hector
    Le Gorrec, Yann
    Maschke, Bernhard
    Couenne, Francoise
    AUTOMATICA, 2016, 64 : 105 - 111
  • [49] Discrete port-Hamiltonian formulation and numerical approximation for systems of two conservation laws
    Kotyczka, Paul
    Maschke, Bernhard
    AT-AUTOMATISIERUNGSTECHNIK, 2017, 65 (05) : 308 - 322
  • [50] Port-Hamiltonian formulation for Higher-order PDEs
    Schoeberl, M.
    Schlacher, K.
    IFAC PAPERSONLINE, 2015, 48 (13): : 244 - 249