Dissipative port-Hamiltonian Formulation of Maxwell Viscoelastic Fluids

被引:0
|
作者
Mora, Luis A. [1 ]
Le Gorrec, Yann [1 ]
Ramirez, Hector [2 ]
Yuz, Juan [2 ]
Maschke, Bernhard [3 ]
机构
[1] Univ Franche Comte, Univ Bourgogne Franche Comte, ENSMM, FEMTO ST Inst,AS2M Dept, 24 Rue Savary, F-25000 Besancon, France
[2] Univ Tecn Federico Santa Maria, AC3E, Av Espana 1680, Valparaiso 1680, Chile
[3] Univ Lyon 1, Univ Lyon, Lab Automat & Genie Proc, CNRS,UMR 5007, F-69622 Villeurbanne, France
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 14期
关键词
Port-Hamiltonian systems; Non-Newtonian Fluids; Maxwell's viscoelasticity; MODELS;
D O I
10.1016/j.ifacol.2021.10.392
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we consider general port-Hamiltonian formulations of multi-dimensional Maxwell's viscoelastic fluids. Two different cases are considered to describe the energy fluxes in isentropic compressible and incompressible fluids. In the compressible case, the viscoelastic effects of shear and dilatational strains on the stress tensor are described individually through the corresponding constitutive equations. In the incompressible case, an approach based on the bulk modulus definition is proposed in order to obtain an appropriate characterization, from the port-Hamiltonian point of view, of the pressure and nonlinear terms in the momentum equation, associated with both dynamic pressure and vorticity of the flow. Copyright (C) 2021 The Authors.
引用
收藏
页码:430 / 435
页数:6
相关论文
共 50 条
  • [1] Dissipative Shallow Water Equations: a port-Hamiltonian formulation
    Cardoso-Ribeiro, Flavio Luiz
    Matignon, Denis
    Lefevre, Laurent
    IFAC PAPERSONLINE, 2021, 54 (19): : 167 - 172
  • [2] Port-Hamiltonian Formulation of Systems With Memory
    Jeltsema, Dimitri
    Doria-Cerezo, Arnau
    PROCEEDINGS OF THE IEEE, 2012, 100 (06) : 1928 - 1937
  • [3] A port-Hamiltonian formulation of coupled heat transfer
    Jaeschke, Jens
    Ehrhardt, Matthias
    Guenther, Michael
    Jacob, Birgit
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2022, 28 (01) : 78 - 94
  • [4] Port-Hamiltonian formulation of nonlinear electrical circuits
    Gernandt, H.
    Haller, F. E.
    Reis, T.
    van der Schaft, A. J.
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 159
  • [5] Port-Hamiltonian Formulation and Analysis of the LuGre Friction Model
    Koopman, Johan
    Jeltsema, Dimitri
    Verhaegen, Michel
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 3181 - 3186
  • [6] Port-Hamiltonian formulations for the modeling, simulation and control of fluids
    Cardoso-Ribeiro, Flavio Luiz
    Haine, Ghislain
    Le Gorrec, Yann
    Matignon, Denis
    Ramirez, Hector
    COMPUTERS & FLUIDS, 2024, 283
  • [7] Model Reduction for a Port-Hamiltonian Formulation of the Euler Equations
    Hauschild, Sarah-Alexa
    Marheineke, Nicole
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI, 2022, 39 : 1 - 7
  • [8] Port-Hamiltonian formulation for Higher-order PDEs
    Schoeberl, M.
    Schlacher, K.
    IFAC PAPERSONLINE, 2015, 48 (13): : 244 - 249
  • [9] An irreversible port-Hamiltonian formulation of distributed diffusion processes
    Ramirez, Hector
    Le Gorrec, Yann
    IFAC PAPERSONLINE, 2016, 49 (24): : 46 - 51
  • [10] On discrete-time dissipative port-Hamiltonian (descriptor) systems
    Cherifi, Karim
    Gernandt, Hannes
    Hinsen, Dorothea
    Mehrmann, Volker
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2024, 36 (03) : 561 - 599