Dissipative port-Hamiltonian Formulation of Maxwell Viscoelastic Fluids

被引:0
|
作者
Mora, Luis A. [1 ]
Le Gorrec, Yann [1 ]
Ramirez, Hector [2 ]
Yuz, Juan [2 ]
Maschke, Bernhard [3 ]
机构
[1] Univ Franche Comte, Univ Bourgogne Franche Comte, ENSMM, FEMTO ST Inst,AS2M Dept, 24 Rue Savary, F-25000 Besancon, France
[2] Univ Tecn Federico Santa Maria, AC3E, Av Espana 1680, Valparaiso 1680, Chile
[3] Univ Lyon 1, Univ Lyon, Lab Automat & Genie Proc, CNRS,UMR 5007, F-69622 Villeurbanne, France
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 14期
关键词
Port-Hamiltonian systems; Non-Newtonian Fluids; Maxwell's viscoelasticity; MODELS;
D O I
10.1016/j.ifacol.2021.10.392
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we consider general port-Hamiltonian formulations of multi-dimensional Maxwell's viscoelastic fluids. Two different cases are considered to describe the energy fluxes in isentropic compressible and incompressible fluids. In the compressible case, the viscoelastic effects of shear and dilatational strains on the stress tensor are described individually through the corresponding constitutive equations. In the incompressible case, an approach based on the bulk modulus definition is proposed in order to obtain an appropriate characterization, from the port-Hamiltonian point of view, of the pressure and nonlinear terms in the momentum equation, associated with both dynamic pressure and vorticity of the flow. Copyright (C) 2021 The Authors.
引用
收藏
页码:430 / 435
页数:6
相关论文
共 50 条
  • [31] Stochastic Port-Hamiltonian Systems
    Francesco Cordoni
    Luca Di Persio
    Riccardo Muradore
    Journal of Nonlinear Science, 2022, 32
  • [32] Incrementally port-Hamiltonian systems
    Camlibel, M. K.
    van der Schaft, A. J.
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2538 - 2543
  • [33] PORT-HAMILTONIAN SYSTEMS ON GRAPHS
    van der Schaft, A. J.
    Maschke, B. M.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (02) : 906 - 937
  • [34] Port-Hamiltonian Modeling for Control
    van der Schaft, Arjan
    ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 3, 2020, 2020, 3 : 393 - 416
  • [35] Memristive port-Hamiltonian Systems
    Jeltsema, Dimitri
    van der Schaft, Arjan J.
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2010, 16 (02) : 75 - 93
  • [36] Stochastic Port-Hamiltonian Systems
    Cordoni, Francesco
    Di Persio, Luca
    Muradore, Riccardo
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (06)
  • [37] Observability for port-Hamiltonian systems
    Jacob, Birgit
    Zwart, Hans
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 2052 - 2057
  • [38] Discrete port-Hamiltonian systems
    Talasila, V
    Clemente-Gallardo, J
    van der Schaft, AJ
    SYSTEMS & CONTROL LETTERS, 2006, 55 (06) : 478 - 486
  • [39] Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR
    Ramirez, Hector
    Maschke, Bernhard
    Sbarbaro, Daniel
    CHEMICAL ENGINEERING SCIENCE, 2013, 89 : 223 - 234
  • [40] Modelling and structure-preserving discretization of Maxwell's equations as port-Hamiltonian system
    Payen, Gabriel
    Matignon, Denis
    Haine, Ghislain
    IFAC PAPERSONLINE, 2020, 53 (02): : 7581 - 7586