Compact Bat Algorithm with Deep Learning Model for Biomedical EEG EyeState Classification

被引:3
|
作者
Larabi-Marie-Sainte, Souad [1 ]
Alabdulkreem, Eatedal [2 ]
Alamgeer, Mohammad [3 ]
Nour, Mohamed K. [4 ]
Hilal, Anwer Mustafa [5 ]
Al Duhayyim, Mesfer [6 ]
Motwakel, Abdelwahed [5 ]
Yaseen, Ishfaq [5 ]
机构
[1] Prince Sultan Univ, Coll Comp & Informat Sci, Dept Comp Sci, Riyadh, Saudi Arabia
[2] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Comp Sci, Riyadh 11671, Saudi Arabia
[3] King Khalid Univ, Coll Sci & Art Mahayil, Dept Informat Syst, Abha, Saudi Arabia
[4] Umm Al Qura Univ, Coll Comp & Informat Syst, Dept Comp Sci, Mecca, Saudi Arabia
[5] Prince Sattam bin Abdulaziz Univ, Dept Comp & Self Dev, Alkharj, Saudi Arabia
[6] Prince Sattam bin Abdulaziz Univ, Coll Community Aflaj, Dept Nat & Appl Sci, Al Kharj, Saudi Arabia
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2022年 / 72卷 / 03期
关键词
Biomedical signals; EEG; EyeState classification; deep learning; metaheuristics;
D O I
10.32604/cmc.2022.027922
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Electroencephalography (EEG) eye state classification becomes an essential tool to identify the cognitive state of humans. It can be used in several fields such as motor imagery recognition, drug effect detection, emotion categorization, seizure detection, etc. With the latest advances in deep learning (DL) models, it is possible to design an accurate and prompt EEG EyeState classification problem. In this view, this study presents a novel compact bat algorithm with deep learning model for biomedical EEG EyeState classification (CBADL-BEESC) model. The major intention of the CBADL-BEESC technique aims to categorize the presence of EEG EyeState. The CBADL-BEESC model performs feature extraction using the ALexNet model which helps to produce useful feature vectors. In addition, extreme learning machine autoencoder (ELM-AE) model is applied to classify the EEG signals and the parameter tuning of the ELM-AE model is performed using CBA. The experimental result analysis of the CBADL-BEESC model is carried out on benchmark results and the comparative outcome reported the supremacy of the CBADL-BEESC model over the recent methods.
引用
收藏
页码:4589 / 4601
页数:13
相关论文
共 50 条
  • [31] Evolutionary optimisation with outlier detection-based deep learning model for biomedical data classification
    Raja R.
    Ashok B.
    International Journal of Networking and Virtual Organisations, 2022, 27 (02) : 143 - 162
  • [32] Performance Evaluation of Deep Learning Algorithms in Biomedical Document Classification
    Behera, Bichitrananda
    Kumaravelan, G.
    Kumar, Prem B.
    2019 11TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC 2019), 2019, : 220 - 224
  • [33] A Hybrid Model of Extreme Learning Machine Based on Bat and Cuckoo Search Algorithm for Regression and Multiclass Classification
    Fan, Qinwei
    Fan, Tongke
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [34] Genetic Algorithm based Deep Learning Model Selection for Visual Data Classification
    Tian, Haiman
    Chen, Shu-Ching
    Shyu, Mei-Ling
    2019 IEEE 20TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2019), 2019, : 127 - 134
  • [35] An Upgraded Bat Algorithm for Tuning Extreme Learning Machines for Data Classification
    Alihodzic, Adis
    Tuba, Eva
    Tuba, Milan
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 125 - 126
  • [36] CNN algorithm for plant classification in deep learning
    Valarmathi, G.
    Suganthi, S. U.
    Subashini, V.
    Janaki, R.
    Sivasankari, R.
    Dhanasekar, S.
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 3684 - 3689
  • [37] Food Classification Using Deep Learning Algorithm
    Jamnekar, R., V
    Keole, R. R.
    Mohod, S. W.
    Mahore, T. R.
    Pande, Sagar
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 3, 2023, 492 : 717 - 724
  • [38] Classification of radioxenon spectra with deep learning algorithm
    Azimi, Sepideh Alsadat
    Afarideh, Hossein
    Chai, Jong-Seo
    Kalinowski, Martin
    Gheddou, Abdelhakim
    Hofman, Radek
    JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2021, 237 (237)
  • [39] Garbage Classification Algorithm Based on Deep Learning
    Tian, Zhen
    Sun, Danfeng
    Yu, Changli
    Li, Jinsen
    Ma, Guangcheng
    Xia, Hongwei
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 8199 - 8203
  • [40] Sleep Stage Classification Based on EEG, EOG, and CNN-GRU Deep Learning Model
    Niroshana, Isuru S. M.
    Zhu, Xin
    Chen, Ying
    Chen, Wenxi
    2019 IEEE 10TH INTERNATIONAL CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY (ICAST 2019), 2019, : 521 - 527