Compact Bat Algorithm with Deep Learning Model for Biomedical EEG EyeState Classification

被引:3
|
作者
Larabi-Marie-Sainte, Souad [1 ]
Alabdulkreem, Eatedal [2 ]
Alamgeer, Mohammad [3 ]
Nour, Mohamed K. [4 ]
Hilal, Anwer Mustafa [5 ]
Al Duhayyim, Mesfer [6 ]
Motwakel, Abdelwahed [5 ]
Yaseen, Ishfaq [5 ]
机构
[1] Prince Sultan Univ, Coll Comp & Informat Sci, Dept Comp Sci, Riyadh, Saudi Arabia
[2] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Comp Sci, Riyadh 11671, Saudi Arabia
[3] King Khalid Univ, Coll Sci & Art Mahayil, Dept Informat Syst, Abha, Saudi Arabia
[4] Umm Al Qura Univ, Coll Comp & Informat Syst, Dept Comp Sci, Mecca, Saudi Arabia
[5] Prince Sattam bin Abdulaziz Univ, Dept Comp & Self Dev, Alkharj, Saudi Arabia
[6] Prince Sattam bin Abdulaziz Univ, Coll Community Aflaj, Dept Nat & Appl Sci, Al Kharj, Saudi Arabia
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2022年 / 72卷 / 03期
关键词
Biomedical signals; EEG; EyeState classification; deep learning; metaheuristics;
D O I
10.32604/cmc.2022.027922
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Electroencephalography (EEG) eye state classification becomes an essential tool to identify the cognitive state of humans. It can be used in several fields such as motor imagery recognition, drug effect detection, emotion categorization, seizure detection, etc. With the latest advances in deep learning (DL) models, it is possible to design an accurate and prompt EEG EyeState classification problem. In this view, this study presents a novel compact bat algorithm with deep learning model for biomedical EEG EyeState classification (CBADL-BEESC) model. The major intention of the CBADL-BEESC technique aims to categorize the presence of EEG EyeState. The CBADL-BEESC model performs feature extraction using the ALexNet model which helps to produce useful feature vectors. In addition, extreme learning machine autoencoder (ELM-AE) model is applied to classify the EEG signals and the parameter tuning of the ELM-AE model is performed using CBA. The experimental result analysis of the CBADL-BEESC model is carried out on benchmark results and the comparative outcome reported the supremacy of the CBADL-BEESC model over the recent methods.
引用
收藏
页码:4589 / 4601
页数:13
相关论文
共 50 条
  • [21] EEG classification of driver mental states by deep learning
    Hong Zeng
    Chen Yang
    Guojun Dai
    Feiwei Qin
    Jianhai Zhang
    Wanzeng Kong
    Cognitive Neurodynamics, 2018, 12 : 597 - 606
  • [22] Classification of Affective States via EEG and Deep Learning
    Teo, Jason
    Chew, Lin Hou
    Chia, Jia Tian
    Mountstephens, James
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (05) : 132 - 142
  • [23] Automatic classification of EEG signals via deep learning
    Wu, Tao
    Kong, Xiangzeng
    Wang, Yiwen
    Yang, Xue
    Liu, Jingxuan
    Qi, Jun
    2021 IEEE 19TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2021,
  • [24] Deep Learning for EEG-Based Preference Classification
    Teo, Jason
    Hou, Chew Lin
    Mountstephens, James
    2ND INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY 2017 (ICAST'17), 2017, 1891
  • [25] Imagined Speech Classification Using EEG and Deep Learning
    Abdulghani, Mokhles M.
    Walters, Wilbur L.
    Abed, Khalid H.
    BIOENGINEERING-BASEL, 2023, 10 (06):
  • [26] Deep learning for electroencephalogram (EEG) classification tasks: a review
    Craik, Alexander
    He, Yongtian
    Contreras-Vidal, Jose L.
    JOURNAL OF NEURAL ENGINEERING, 2019, 16 (03)
  • [27] Evaluation of different deep learning approaches for EEG classification
    Scharnagl, Bastian
    Groth, Christian
    2022 5TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE FOR INDUSTRIES, AI4I, 2022, : 42 - 47
  • [28] EEG classification of driver mental states by deep learning
    Zeng, Hong
    Yang, Chen
    Dai, Guojun
    Qin, Feiwei
    Zhang, Jianhai
    Kong, Wanzeng
    COGNITIVE NEURODYNAMICS, 2018, 12 (06) : 597 - 606
  • [29] EEG Emotion Classification Using an Improved SincNet-Based Deep Learning Model
    Zeng, Hong
    Wu, Zhenhua
    Zhang, Jiaming
    Yang, Chen
    Zhang, Hua
    Dai, Guojun
    Kong, Wanzeng
    BRAIN SCIENCES, 2019, 9 (11)
  • [30] A Stacked Deep Autoencoder Model for Biomedical Figure Classification
    Almakky, Ibrahim
    Palade, Vasile
    Hedley, Yih-Ling
    Yang, Jianhua
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1134 - 1138