Evolutionary optimisation with outlier detection-based deep learning model for biomedical data classification

被引:0
|
作者
Raja R. [1 ]
Ashok B. [2 ]
机构
[1] Department of Computer and Information Science, Annamalai University, Tamil Nadu, Annamalai Nagar
[2] Department of Computer Science, PSPT MGR Government, Arts and Science College, Tamil Nadu, Sirkali
关键词
class imbalance; classification; data mining; deep learning; medical data; outlier detection; parameter tuning;
D O I
10.1504/IJNVO.2022.10050523
中图分类号
学科分类号
摘要
In recent times, large amount of medical data is being generated by various sources such as test reports, medications, etc. Due to the recent advances of machine learning (ML) and deep learning (DL) models, medical data classification (MDC) remains a crucial process in the healthcare sector. This study introduces a new hyperparameter tuned convolutional neural network-recurrent neural network (HPT-CNN-RNN) model for medical data classification. The proposed HPT-CNN-RNN model includes pre-processing step to transform the actual healthcare data into useful format. Besides, SVM-SMOTE approach was executed to handle the class imbalance problems. In addition, outlier detection process is performed using extreme gradient boosting (XGBoost) model. Moreover, bacterial foraging optimisation algorithm (BFOA) with CNNRNN model is employed to categorise medical data. Furthermore, the BFOA is utilised to optimally choose the hyperparameter values of the CNNRNN model. The experimental outcomes designated the better performance of the HPT-CNN-RNN model over the other methods. Copyright © 2022 Inderscience Enterprises Ltd.
引用
收藏
页码:143 / 162
页数:19
相关论文
共 50 条
  • [1] Grid-Based and Outlier Detection-Based Data Clustering and Classification
    Cho, Kyu Cheol
    Lee, Jong Sik
    UBIQUITOUS COMPUTING AND MULTIMEDIA APPLICATIONS, PT I, 2011, 150 : 129 - 138
  • [2] Grid-based & Outlier Detection-based Data Clustering & Classification
    Cho, Kyu Cheol
    Lee, Jong Sik
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2012, 15 (03): : 1253 - 1266
  • [3] An Explainable Outlier Detection-based Data Cleaning Approach for Intrusion Detection
    Ha, Theodore
    Shao, Sicong
    Hariri, Salim
    2023 20TH ACS/IEEE INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS, AICCSA, 2023,
  • [4] ODBOT: Outlier detection-based oversampling technique for imbalanced datasets learning
    Ibrahim, Mohammed H.
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (22): : 15781 - 15806
  • [5] ODBOT: Outlier detection-based oversampling technique for imbalanced datasets learning
    Mohammed H. IBRAHIM
    Neural Computing and Applications, 2021, 33 : 15781 - 15806
  • [6] Cephalometric Landmarks Identification Through an Object Detection-based Deep Learning Model
    Tafala, Idriss
    Ben-Bouazza, Fatima-Ezzahraa
    Edder, Aymane
    Manchadi, Oumaima
    Et-Taoussi, Mehdi
    Jioudi, Bassma
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (02) : 859 - 867
  • [7] Optimal deep learning based fusion model for biomedical image classification
    Mansour, Romany F.
    Alfar, Nada M.
    Abdel-Khalek, Sayed
    Abdelhaq, Maha
    Saeed, Rashid A.
    Alsaqour, Raed
    EXPERT SYSTEMS, 2022, 39 (03)
  • [8] Deep learning based sarcasm detection and classification model
    Bhukya, Raghuram
    Vodithala, Swathy
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (01) : 2053 - 2066
  • [9] Intelligent Deep Transfer Learning Based Malaria Parasite Detection and Classification Model Using Biomedical Image
    Alassaf, Ahmad
    Sikkandar, Mohamed Yacin
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (03): : 5273 - 5285
  • [10] An Efficient Outlier Detection with Deep Learning-Based Financial Crisis Prediction Model in Big Data Environment
    Venkateswarlu, Yalla
    Baskar, K.
    Wongchai, Anupong
    Shankar, Venkatesh Gauri
    Martel Carranza, Christian Paolo
    Arias Gonzales, Jose Luis
    Dharan, A. R. Murali
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022