New finite element methods in computational fluid dynamics by H(div) elements

被引:89
|
作者
Wang, Junping
Ye, Xiu
机构
[1] Natl Sci Fdn, Div Math Sci, Arlington, VA 22230 USA
[2] Univ Arkansas, Dept Math, Little Rock, AR 72204 USA
关键词
finite element methods; Stokes problem; DISCONTINUOUS GALERKIN METHODS; NAVIER-STOKES EQUATIONS; ELLIPTIC PROBLEMS; SYSTEMS;
D O I
10.1137/060649227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors present two formulations for the Stokes problem which make use of the existing H(div) elements of the Raviart-Thomas type originally developed for the second-order elliptic problems. In addition, two new H(div) elements are constructed and analyzed particularly for the new formulations. Optimal-order error estimates are established for the corresponding finite element solutions in vaxious Sobolev norms. The finite element solutions feature a full satisfaction of the continuity equation when existing Raviart-Thomas-type elements are employed in the numerical scheme.
引用
收藏
页码:1269 / 1286
页数:18
相关论文
共 50 条
  • [41] Dynamic-mesh finite element method for Lagrangian computational fluid dynamics
    Malcevic, I
    Ghattas, O
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2002, 38 (10) : 965 - 982
  • [42] Superconvergence of H(div) finite element approximations for the Stokes problem by L2-projection methods
    Jari, Rabeea
    Mu, Lin
    Ye, Xiu
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) : 5649 - 5656
  • [43] SIMPLEX-AVERAGED FINITE ELEMENT METHODS FOR H(GRAD), H(CURL), AND H(DIV) CONVECTION-DIFFUSION PROBLEMS
    Wu, Shuonan
    Xu, Jinchao
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (01) : 884 - 906
  • [44] Construction of H(div)-conforming mixed finite elements on cuboidal hexahedra
    Arbogast, Todd
    Tao, Zhen
    NUMERISCHE MATHEMATIK, 2019, 142 (01) : 1 - 32
  • [45] Fourth Japan-US Symposium on Finite Element Methods in Large-Scale Computational Fluid Dynamics - Preface
    Tezduyar, TE
    Hughes, TJR
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 190 (3-4) : 241 - 241
  • [46] General polytopal H(div)-conformal finite elements and their discretisation spaces
    Abgrall, Remi
    Le Meledo, Elise
    Offner, Philipp
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (55): : S677 - S704
  • [47] Computational Performances of Natural Element and Finite Element Methods
    Marechal, Yves
    Ramdane, Brahim
    Botelho, Diego Pereira
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) : 405 - 408
  • [48] An H(div)-Conforming Finite Element Method for the Biot Consolidation Model
    Zeng, Yuping
    Cai, Mingchao
    Wang, Feng
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2019, 9 (03) : 558 - 579
  • [49] Grad-div Stabilized Finite Element Schemes for the Fluid-Fluid Interaction Model
    Li, Wei
    Huang, Pengzhan
    He, Yinnian
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2021, 30 (02) : 536 - 566
  • [50] Pressure-based finite-volume methods in computational fluid dynamics
    Acharya, S.
    Baliga, B. R.
    Karki, K.
    Murthy, J. Y.
    Prakash, C.
    Vanka, S. P.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2007, 129 (04): : 407 - 424