New finite element methods in computational fluid dynamics by H(div) elements

被引:89
|
作者
Wang, Junping
Ye, Xiu
机构
[1] Natl Sci Fdn, Div Math Sci, Arlington, VA 22230 USA
[2] Univ Arkansas, Dept Math, Little Rock, AR 72204 USA
关键词
finite element methods; Stokes problem; DISCONTINUOUS GALERKIN METHODS; NAVIER-STOKES EQUATIONS; ELLIPTIC PROBLEMS; SYSTEMS;
D O I
10.1137/060649227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors present two formulations for the Stokes problem which make use of the existing H(div) elements of the Raviart-Thomas type originally developed for the second-order elliptic problems. In addition, two new H(div) elements are constructed and analyzed particularly for the new formulations. Optimal-order error estimates are established for the corresponding finite element solutions in vaxious Sobolev norms. The finite element solutions feature a full satisfaction of the continuity equation when existing Raviart-Thomas-type elements are employed in the numerical scheme.
引用
收藏
页码:1269 / 1286
页数:18
相关论文
共 50 条
  • [21] H(div)-CONFORMING FINITE ELEMENTS FOR THE BRINKMAN PROBLEM
    Konno, Juho
    Stenberg, Rolf
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (11): : 2227 - 2248
  • [22] H (div)-conforming finite element tensors with constraints
    Chen, Long
    Huang, Xuehai
    RESULTS IN APPLIED MATHEMATICS, 2024, 23
  • [23] Comparison of effects on technical variances of computational fluid dynamics (CFD) software based on finite element and finite volume methods
    Jeong, Woowon
    Seong, Jaehoon
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2014, 78 : 19 - 26
  • [24] H(div) and H(curl)-conforming virtual element methods
    da Veiga, L. Beirao
    Brezzi, F.
    Marini, L. D.
    Russo, A.
    NUMERISCHE MATHEMATIK, 2016, 133 (02) : 303 - 332
  • [25] NEW FINITE ELEMENT FORMULATION FOR COMPUTATIONAL FLUID DYNAMICS. II: BEYOND SUPG.
    Hughes, Thomas J.R.
    Mallet, Michel
    Mizukami, Akira
    1600, (54):
  • [26] EFFICIENT ASSEMBLY OF H(div) AND H(curl) CONFORMING FINITE ELEMENTS
    Rognes, Marie E.
    Kirby, Robert C.
    Logg, Anders
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (06): : 4130 - 4151
  • [27] Partially Discontinuous Nodal Finite Elements for H(curl) and H(div)
    Hu, Jun
    Hu, Kaibo
    Zhang, Qian
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2022, 22 (03) : 613 - 629
  • [28] A family of H-div-div mixed triangular finite elements for the biharmonic equation
    Ye, Xiu
    Zhang, Shangyou
    RESULTS IN APPLIED MATHEMATICS, 2022, 15
  • [29] Theory to practice on finite element method and computational fluid dynamics tools
    Lee, V.C.C.
    Law, M.C.
    Wee, S.K.
    Australasian Journal of Engineering Education, 2015, 20 (02) : 123 - 133
  • [30] A quadratic nonconforming vector finite element for H(curl; Ω) ∧ H(div; Ω)
    Brenner, Susanne C.
    Sung, Li-Yeng
    APPLIED MATHEMATICS LETTERS, 2009, 22 (06) : 892 - 896