New finite element methods in computational fluid dynamics by H(div) elements

被引:89
|
作者
Wang, Junping
Ye, Xiu
机构
[1] Natl Sci Fdn, Div Math Sci, Arlington, VA 22230 USA
[2] Univ Arkansas, Dept Math, Little Rock, AR 72204 USA
关键词
finite element methods; Stokes problem; DISCONTINUOUS GALERKIN METHODS; NAVIER-STOKES EQUATIONS; ELLIPTIC PROBLEMS; SYSTEMS;
D O I
10.1137/060649227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors present two formulations for the Stokes problem which make use of the existing H(div) elements of the Raviart-Thomas type originally developed for the second-order elliptic problems. In addition, two new H(div) elements are constructed and analyzed particularly for the new formulations. Optimal-order error estimates are established for the corresponding finite element solutions in vaxious Sobolev norms. The finite element solutions feature a full satisfaction of the continuity equation when existing Raviart-Thomas-type elements are employed in the numerical scheme.
引用
收藏
页码:1269 / 1286
页数:18
相关论文
共 50 条
  • [31] A Massively Parallel Hybrid Finite Volume/Finite Element Scheme for Computational Fluid Dynamics
    Rio-Martin, Laura
    Busto, Saray
    Dumbser, Michael
    MATHEMATICS, 2021, 9 (18)
  • [32] Interface-penalty finite element methods for interface problems in H1, H(curl), and H(div)
    Liu, Huaqing
    Zhang, Linbo
    Zhang, Xiaodi
    Zheng, Weiying
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 367
  • [33] Weak Galerkin finite element methods for H(curl; O) and H(curl, div; O)-elliptic problems
    Kumar, Raman
    Deka, Bhupen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 147 : 210 - 221
  • [34] Numerical computations with H(div)-finite elements for the Brinkman problem
    Juho Könnö
    Rolf Stenberg
    Computational Geosciences, 2012, 16 : 139 - 158
  • [35] Numerical computations with H(div)-finite elements for the Brinkman problem
    Konno, Juho
    Stenberg, Rolf
    COMPUTATIONAL GEOSCIENCES, 2012, 16 (01) : 139 - 158
  • [36] A FAMILY OF H(div) FINITE ELEMENT APPROXIMATIONS ON POLYGONAL MESHES
    Talischi, Cameron
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02): : A1067 - A1088
  • [37] A NEW FINITE-ELEMENT FORMULATION FOR COMPUTATIONAL FLUID-DYNAMICS .2. BEYOND SUPG
    HUGHES, TJR
    MALLET, M
    MIZUKAMI, A
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1986, 54 (03) : 341 - 355
  • [38] Finite elements and object-oriented implementation techniques in computational fluid dynamics
    Munthe, O
    Langtangen, HP
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 190 (8-10) : 865 - 888
  • [39] COMPUTATIONAL FLUID DYNAMICS AND STRUCTURAL FINITE ELEMENT ANALYSIS OF A MICRO HYDRO TURBINE
    Riglin, Jacob D.
    Schleicher, W. Chris
    Kraybil, Zackary
    Klein, Robert C.
    Oztekin, Alparslan
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 7B, 2014,
  • [40] Adaptive finite element computational fluid dynamics using an anisotropic error estimator
    Almeida, RC
    Feijóo, RA
    Galeao, AC
    Padra, C
    Silva, RS
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 182 (3-4) : 379 - 400