New finite element methods in computational fluid dynamics by H(div) elements

被引:89
|
作者
Wang, Junping
Ye, Xiu
机构
[1] Natl Sci Fdn, Div Math Sci, Arlington, VA 22230 USA
[2] Univ Arkansas, Dept Math, Little Rock, AR 72204 USA
关键词
finite element methods; Stokes problem; DISCONTINUOUS GALERKIN METHODS; NAVIER-STOKES EQUATIONS; ELLIPTIC PROBLEMS; SYSTEMS;
D O I
10.1137/060649227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors present two formulations for the Stokes problem which make use of the existing H(div) elements of the Raviart-Thomas type originally developed for the second-order elliptic problems. In addition, two new H(div) elements are constructed and analyzed particularly for the new formulations. Optimal-order error estimates are established for the corresponding finite element solutions in vaxious Sobolev norms. The finite element solutions feature a full satisfaction of the continuity equation when existing Raviart-Thomas-type elements are employed in the numerical scheme.
引用
收藏
页码:1269 / 1286
页数:18
相关论文
共 50 条
  • [1] Finite element methods for the Navier-Stokes equations by H(div) elements
    Wang, Junping
    Wang, Xiaoshen
    Ye, Xiu
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2008, 26 (03) : 410 - 436
  • [2] FINITE ELEMENT METHODS FOR THE NAVIER-STOKES EQUATIONS BY H(div)ELEMENTS
    Junping Wang Division of Mathematical Sciences
    Journal of Computational Mathematics, 2008, 26 (03) : 410 - 436
  • [3] On combining finite element methods and finite volume methods in computational fluid dynamics
    Pascal, F
    PROGRESS IN ANALYSIS, VOLS I AND II, 2003, : 1205 - 1213
  • [4] H-P ADAPTIVE FINITE-ELEMENT METHODS IN COMPUTATIONAL FLUID-DYNAMICS
    ODEN, JT
    DEMKOWICZ, L
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1991, 89 (1-3) : 11 - 40
  • [5] Fluid-structure interaction with H(div)-conforming finite elements
    Neunteufel, Michael
    Schoberl, Joachim
    COMPUTERS & STRUCTURES, 2021, 243
  • [6] Fluid-structure interaction with H(div)-conforming finite elements
    Neunteufel, Michael
    Schöberl, Joachim
    Computers and Structures, 2021, 243
  • [7] Quadrilateral H(div) finite elements
    Arnold, DN
    Boffi, D
    Falk, RS
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) : 2429 - 2451
  • [8] ON TAYLOR WEAK STATEMENT FINITE-ELEMENT METHODS FOR COMPUTATIONAL FLUID-DYNAMICS
    CHAFFIN, DJ
    BAKER, AJ
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1995, 21 (04) : 273 - 294
  • [9] Finite Element Framework for Computational Fluid Dynamics in FEBIO
    Ateshian, Gerard A.
    Shim, Jay J.
    Maas, Steve A.
    Weiss, Jeffrey A.
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2018, 140 (02):
  • [10] HEXAHEDRAL H(DIV) AND H(CURL) FINITE ELEMENTS
    Falk, Richard S.
    Gatto, Paolo
    Monk, Peter
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (01): : 115 - 143