Bounds for the Kirchhoff Index of Regular Graphs via the Spectra of Their Random Walks

被引:27
|
作者
Luis Palacios, Jose [1 ]
Miguel Renom, Jose [1 ]
机构
[1] Univ Simon Bolivar, Dept Comp Cient & Estadist, Caracas, Venezuela
关键词
hitting times; fundamental matrix; Kemeny's constant; RESISTANCE DISTANCE;
D O I
10.1002/qua.22323
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using probabilistic tools, we give tight upper and lower bounds for the Kirchhoff index of any d-regular N-vertex graph in terms of d, N, and the spectral gap of the transition probability matrix associated to the random walk on the graph. We then use bounds of the spectral gap of more specialized graphs, available in the literature, in order to obtain upper bounds for the Kirchhoff index of these specialized graphs. As a byproduct, we obtain a closed-form formula for the Kirchhoff index of the d-dimensional cube in terms of the first inverse moment of a positive binomial variable. (C) 2009 Wiley Periodicals, Inc. Int J Quantum Chem 110: 1637-1641, 2010
引用
收藏
页码:1637 / 1641
页数:5
相关论文
共 50 条
  • [31] Analytical results for the distribution of first hitting times of random walks on random regular graphs
    Tishby, Ido
    Biham, Ofer
    Katzav, Eytan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (14)
  • [32] Mode-Seeking on Graphs via Random Walks
    Cho, Minsu
    Lee, Kyoung Mu
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 606 - 613
  • [33] Transduction on Directed Graphs via Absorbing Random Walks
    De, Jaydeep
    Zhang, Xiaowei
    Lin, Feng
    Cheng, Li
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (07) : 1770 - 1784
  • [34] On the Kirchhoff Index of Graphs
    Das, Kinkar C.
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2013, 68 (8-9): : 531 - 538
  • [35] Walks and regular integral graphs
    Stevanovic, Dragan
    de Abreu, Nair M. M.
    de Freitas, Maria A. A.
    Del-Vecchio, Renata
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) : 119 - 135
  • [36] Computing Lower Bounds for the Kirchhoff Index Via Majorization Techniques
    Clemente, Gian Paolo
    Cornaro, Alessandra
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2015, 73 (01) : 175 - 193
  • [37] Bounds for the Sum-Balaban index and (revised) Szeged index of regular graphs
    Lei, Hui
    Yang, Hua
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 : 1259 - 1266
  • [38] Lower Bounds for the Kirchhoff Index
    Li, Rao
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 70 (01) : 163 - 174
  • [39] Bounds for Kirchhoff index of a graph
    Mu, Huijuan
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE OF MATRICES AND OPERATORS (MAO 2012), 2012, : 145 - 148
  • [40] ON THE 2ND EIGENVALUE AND RANDOM-WALKS IN RANDOM D-REGULAR GRAPHS
    FRIEDMAN, J
    COMBINATORICA, 1991, 11 (04) : 331 - 362