Walks and regular integral graphs

被引:13
|
作者
Stevanovic, Dragan [1 ]
de Abreu, Nair M. M.
de Freitas, Maria A. A.
Del-Vecchio, Renata
机构
[1] Univ Nis, Nish, Serbia
[2] Univ Fed Rio de Janeiro, BR-21941 Rio De Janeiro, Brazil
[3] Univ Fed Fluminense, BR-24220000 Niteroi, RJ, Brazil
关键词
integral graphs; regular graphs; bipartite graphs; graph eigenvalues;
D O I
10.1016/j.laa.2006.11.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a useful correspondence between the closed walks in regular graphs and the walks in infinite regular trees, which, after counting the walks of a given length between vertices at a given distance in an infinite regular tree, provides a lower bound on the number of closed walks in regular graphs. This lower hound is then applied to reduce the number of the feasible spectra of the 4-regular bipartite integral graphs by more than a half. Next, we give the details of the exhaustive computer search on all 4-regular bipartite graphs with up to 24 vertices, which yields a total of 47 integral graphs. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:119 / 135
页数:17
相关论文
共 50 条
  • [1] Grover walks on unitary Cayley graphs and integral regular graphs
    Bhakta, Koushik
    Bhattacharjya, Bikash
    arXiv,
  • [2] Random walks on regular and irregular graphs
    Coppersmith, D
    Feige, U
    Shearer, J
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1996, 9 (02) : 301 - 308
  • [3] Quantum Walks on Regular Graphs and Eigenvalues
    Godsil, Chris
    Guo, Krystal
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [4] Regular integral sum graphs
    Melnikov, LS
    Pyatkin, AV
    DISCRETE MATHEMATICS, 2002, 252 (1-3) : 237 - 245
  • [5] Integral graphs and (κ, τ)-regular sets
    Carvalho, Paula
    Rama, Paula
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) : 2409 - 2417
  • [6] Szegedy quantum walks with memory on regular graphs
    Dan Li
    Ying Liu
    Yu-Guang Yang
    Juan Xu
    Jia-Bin Yuan
    Quantum Information Processing, 2020, 19
  • [7] Entanglement in coined quantum walks on regular graphs
    Carneiro, I
    Loo, M
    Xu, XB
    Girerd, M
    Kendon, V
    Knight, PL
    NEW JOURNAL OF PHYSICS, 2005, 7
  • [8] Random walks on graphs with regular volume growth
    Coulhon, T
    Grigoryan, A
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 1998, 8 (04) : 656 - 701
  • [9] Random Walks on Graphs with Regular Volume Growth
    T. Coulhon
    A. Grigoryan
    Geometric & Functional Analysis GAFA, 1998, 8 : 656 - 701
  • [10] MULTIPLE RANDOM WALKS IN RANDOM REGULAR GRAPHS
    Cooper, Colin
    Frieze, Alan
    Radzik, Tomasz
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (04) : 1738 - 1761