Bounds for the Kirchhoff Index of Regular Graphs via the Spectra of Their Random Walks

被引:27
|
作者
Luis Palacios, Jose [1 ]
Miguel Renom, Jose [1 ]
机构
[1] Univ Simon Bolivar, Dept Comp Cient & Estadist, Caracas, Venezuela
关键词
hitting times; fundamental matrix; Kemeny's constant; RESISTANCE DISTANCE;
D O I
10.1002/qua.22323
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using probabilistic tools, we give tight upper and lower bounds for the Kirchhoff index of any d-regular N-vertex graph in terms of d, N, and the spectral gap of the transition probability matrix associated to the random walk on the graph. We then use bounds of the spectral gap of more specialized graphs, available in the literature, in order to obtain upper bounds for the Kirchhoff index of these specialized graphs. As a byproduct, we obtain a closed-form formula for the Kirchhoff index of the d-dimensional cube in terms of the first inverse moment of a positive binomial variable. (C) 2009 Wiley Periodicals, Inc. Int J Quantum Chem 110: 1637-1641, 2010
引用
收藏
页码:1637 / 1641
页数:5
相关论文
共 50 条
  • [41] Computing the Kirchhoff Index of Some xyz-Transformations of Regular Molecular Graphs
    Yang, Yujun
    INTELLIGENT COMPUTING THEORY, 2014, 8588 : 173 - 183
  • [42] Analytical results for the distribution of first-passage times of random walks on random regular graphs
    Tishby, Ido
    Biham, Ofer
    Katzav, Eytan
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (11):
  • [43] Bounds on the max and min bisection of random cubic and random 4-regular graphs
    Díaz, J
    Do, N
    Serna, MJ
    Wormald, NC
    THEORETICAL COMPUTER SCIENCE, 2003, 307 (03) : 531 - 547
  • [44] Kirchhoff index and degree Kirchhoff index of complete multipartite graphs
    Bapat, Ravindra B.
    Karimi, Masoud
    Liu, Jia-Bao
    DISCRETE APPLIED MATHEMATICS, 2017, 232 : 41 - 49
  • [45] On the trace of random walks on random graphs
    Frieze, Alan
    Krivelevich, Michael
    Michaeli, Peleg
    Peled, Ron
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2018, 116 : 847 - 877
  • [46] Biased random walks on random graphs
    Ben Arous, Gerard
    Fribergh, Alexander
    PROBABILITY AND STATISTICAL PHYSICS IN ST. PETERSBURG, 2016, 91 : 99 - 153
  • [47] Upper Bounds on the Order of Nearly Regular Induced Subgraphs in Random Graphs
    Shang, Yilun
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2011, 38 (04): : 44 - 49
  • [48] Random walks on random simple graphs
    Hildebrand, M
    RANDOM STRUCTURES & ALGORITHMS, 1996, 8 (04) : 301 - 318
  • [49] The Kirchhoff index of subdivisions of graphs
    Yang, Yujun
    DISCRETE APPLIED MATHEMATICS, 2014, 171 : 153 - 157
  • [50] Quantum Walks on Regular Graphs and Eigenvalues
    Godsil, Chris
    Guo, Krystal
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):