Best practices on the differential expression analysis of multi-species RNA-seq

被引:58
|
作者
Chung, Matthew [1 ,2 ]
Bruno, Vincent M. [1 ,2 ]
Rasko, David A. [1 ,2 ]
Cuomo, Christina A. [3 ]
Munoz, Jose F. [3 ]
Livny, Jonathan [3 ]
Shetty, Amol C. [1 ]
Mahurkar, Anup [1 ]
Dunning Hotopp, Julie C. [1 ,2 ,4 ]
机构
[1] Univ Maryland Sch Med, Inst Genome Sci, Baltimore, MD 21201 USA
[2] Univ Maryland Sch Med, Dept Microbiol & Immunol, Baltimore, MD 21201 USA
[3] Broad Inst, Infect Dis & Microbiome Program, Cambridge, MA 02142 USA
[4] Univ Maryland, Greenebaum Canc Ctr, Baltimore, MD 21201 USA
关键词
RNA-Seq; Transcriptomics; Best practices; Differential gene expression; SINGLE-CELL; MESSENGER-RNA; GENE-EXPRESSION; HOST; PATHOGEN; TRANSCRIPTOME; GENOME; BACTERIAL; QUANTIFICATION; EFFICIENT;
D O I
10.1186/s13059-021-02337-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Advances in transcriptome sequencing allow for simultaneous interrogation of differentially expressed genes from multiple species originating from a single RNA sample, termed dual or multi-species transcriptomics. Compared to single-species differential expression analysis, the design of multi-species differential expression experiments must account for the relative abundances of each organism of interest within the sample, often requiring enrichment methods and yielding differences in total read counts across samples. The analysis of multi-species transcriptomics datasets requires modifications to the alignment, quantification, and downstream analysis steps compared to the single-species analysis pipelines. We describe best practices for multi-species transcriptomics and differential gene expression.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Impact of human gene annotations on RNA-seq differential expression analysis
    Hamaguchi, Yu
    Zeng, Chao
    Hamada, Michiaki
    BMC GENOMICS, 2021, 22 (01)
  • [32] A scaling normalization method for differential expression analysis of RNA-seq data
    Mark D Robinson
    Alicia Oshlack
    Genome Biology, 11
  • [33] Differential Expression Analysis in RNA-seq Data Using a Geometric Approach
    Tambonis, Tiago
    Boareto, Marcelo
    Leite, Vitor B. P.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2018, 25 (11) : 1257 - 1265
  • [34] Differential Expression Analysis of RNA-seq Reads: Overview, Taxonomy, and Tools
    Chowdhury, Hussain Ahmed
    Bhattacharyya, Dhruba Kumar
    Kalita, Jugal Kumar
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (02) : 566 - 586
  • [35] A survey of best practices for RNA-seq data analysis (vol 17, 13, 2016)
    Conesa, Ana
    Madrigal, Pedro
    Tarazona, Sonia
    Gomez-Cabrero, David
    Cervera, Alejandra
    McPherson, Andrew
    Szczesniak, Michal Wojciech
    Gaffney, Daniel J.
    Elo, Laura L.
    Zhang, Xuegong
    Mortazavi, Ali
    GENOME BIOLOGY, 2016, 17
  • [36] A fuzzy method for RNA-Seq differential expression analysis in presence of multireads
    Consiglio, Arianna
    Mencar, Corrado
    Grillo, Giorgio
    Marzano, Flaviana
    Caratozzolo, Mariano Francesco
    Liuni, Sabino
    BMC BIOINFORMATICS, 2016, 17
  • [37] LFCseq: a nonparametric approach for differential expression analysis of RNA-seq data
    Lin, Bingqing
    Zhang, Li-Feng
    Chen, Xin
    BMC GENOMICS, 2014, 15
  • [38] RNA-Seq differential expression analysis: An extended review and a software tool
    Costa-Silva, Juliana
    Domingues, Douglas
    Lopes, Fabricio Martins
    PLOS ONE, 2017, 12 (12):
  • [39] A fuzzy method for RNA-Seq differential expression analysis in presence of multireads
    Arianna Consiglio
    Corrado Mencar
    Giorgio Grillo
    Flaviana Marzano
    Mariano Francesco Caratozzolo
    Sabino Liuni
    BMC Bioinformatics, 17
  • [40] An evaluation of RNA-seq differential analysis methods
    Li, Dongmei
    Zand, Martin S.
    Dye, Timothy D.
    Goniewicz, Maciej L.
    Rahman, Irfan
    Xie, Zidian
    PLOS ONE, 2022, 17 (09):