Best practices on the differential expression analysis of multi-species RNA-seq

被引:58
|
作者
Chung, Matthew [1 ,2 ]
Bruno, Vincent M. [1 ,2 ]
Rasko, David A. [1 ,2 ]
Cuomo, Christina A. [3 ]
Munoz, Jose F. [3 ]
Livny, Jonathan [3 ]
Shetty, Amol C. [1 ]
Mahurkar, Anup [1 ]
Dunning Hotopp, Julie C. [1 ,2 ,4 ]
机构
[1] Univ Maryland Sch Med, Inst Genome Sci, Baltimore, MD 21201 USA
[2] Univ Maryland Sch Med, Dept Microbiol & Immunol, Baltimore, MD 21201 USA
[3] Broad Inst, Infect Dis & Microbiome Program, Cambridge, MA 02142 USA
[4] Univ Maryland, Greenebaum Canc Ctr, Baltimore, MD 21201 USA
关键词
RNA-Seq; Transcriptomics; Best practices; Differential gene expression; SINGLE-CELL; MESSENGER-RNA; GENE-EXPRESSION; HOST; PATHOGEN; TRANSCRIPTOME; GENOME; BACTERIAL; QUANTIFICATION; EFFICIENT;
D O I
10.1186/s13059-021-02337-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Advances in transcriptome sequencing allow for simultaneous interrogation of differentially expressed genes from multiple species originating from a single RNA sample, termed dual or multi-species transcriptomics. Compared to single-species differential expression analysis, the design of multi-species differential expression experiments must account for the relative abundances of each organism of interest within the sample, often requiring enrichment methods and yielding differences in total read counts across samples. The analysis of multi-species transcriptomics datasets requires modifications to the alignment, quantification, and downstream analysis steps compared to the single-species analysis pipelines. We describe best practices for multi-species transcriptomics and differential gene expression.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Evaluation of methods for differential expression analysis on multi-group RNA-seq count data
    Tang, Min
    Sun, Jianqiang
    Shimizu, Kentaro
    Kadota, Koji
    BMC BIOINFORMATICS, 2015, 16
  • [22] A Unified Model for Robust Differential Expression Analysis of RNA-Seq Data
    Liu, Kefei
    Shen, Li
    Jiang, Hui
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 437 - 442
  • [23] Power analysis and sample size estimation for RNA-Seq differential expression
    Ching, Travers
    Huang, Sijia
    Garmire, Lana X.
    RNA, 2014, 20 (11) : 1684 - 1696
  • [24] Data Driven Feature Selection for RNA-Seq Differential Expression Analysis
    Han, Henry
    PATTERN RECOGNITION IN BIOINFORMATICS, PRIB 2014, 2014, 8626 : 114 - 115
  • [25] A Comparative Study of Techniques for Differential Expression Analysis on RNA-Seq Data
    Zhang, Zong Hong
    Jhaveri, Dhanisha J.
    Marshall, Vikki M.
    Bauer, Denis C.
    Edson, Janette
    Narayanan, Ramesh K.
    Robinson, Gregory J.
    Lundberg, Andreas E.
    Bartlett, Perry F.
    Wray, Naomi R.
    Zhao, Qiong-Yi
    PLOS ONE, 2014, 9 (08):
  • [26] LFCseq: a nonparametric approach for differential expression analysis of RNA-seq data
    Bingqing Lin
    Li-Feng Zhang
    Xin Chen
    BMC Genomics, 15
  • [27] Impact of human gene annotations on RNA-seq differential expression analysis
    Yu Hamaguchi
    Chao Zeng
    Michiaki Hamada
    BMC Genomics, 22
  • [28] A scaling normalization method for differential expression analysis of RNA-seq data
    Robinson, Mark D.
    Oshlack, Alicia
    GENOME BIOLOGY, 2010, 11 (03):
  • [30] Differential gene expression analysis using coexpression and RNA-Seq data
    Yang, Ei-Wen
    Girke, Thomas
    Jiang, Tao
    BIOINFORMATICS, 2013, 29 (17) : 2153 - 2161