Best practices on the differential expression analysis of multi-species RNA-seq

被引:58
|
作者
Chung, Matthew [1 ,2 ]
Bruno, Vincent M. [1 ,2 ]
Rasko, David A. [1 ,2 ]
Cuomo, Christina A. [3 ]
Munoz, Jose F. [3 ]
Livny, Jonathan [3 ]
Shetty, Amol C. [1 ]
Mahurkar, Anup [1 ]
Dunning Hotopp, Julie C. [1 ,2 ,4 ]
机构
[1] Univ Maryland Sch Med, Inst Genome Sci, Baltimore, MD 21201 USA
[2] Univ Maryland Sch Med, Dept Microbiol & Immunol, Baltimore, MD 21201 USA
[3] Broad Inst, Infect Dis & Microbiome Program, Cambridge, MA 02142 USA
[4] Univ Maryland, Greenebaum Canc Ctr, Baltimore, MD 21201 USA
关键词
RNA-Seq; Transcriptomics; Best practices; Differential gene expression; SINGLE-CELL; MESSENGER-RNA; GENE-EXPRESSION; HOST; PATHOGEN; TRANSCRIPTOME; GENOME; BACTERIAL; QUANTIFICATION; EFFICIENT;
D O I
10.1186/s13059-021-02337-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Advances in transcriptome sequencing allow for simultaneous interrogation of differentially expressed genes from multiple species originating from a single RNA sample, termed dual or multi-species transcriptomics. Compared to single-species differential expression analysis, the design of multi-species differential expression experiments must account for the relative abundances of each organism of interest within the sample, often requiring enrichment methods and yielding differences in total read counts across samples. The analysis of multi-species transcriptomics datasets requires modifications to the alignment, quantification, and downstream analysis steps compared to the single-species analysis pipelines. We describe best practices for multi-species transcriptomics and differential gene expression.
引用
收藏
页数:23
相关论文
共 50 条
  • [11] Stability of methods for differential expression analysis of RNA-seq data
    Lin, Bingqing
    Pang, Zhen
    BMC GENOMICS, 2019, 20 (1)
  • [12] Novel Data Transformations for RNA-seq Differential Expression Analysis
    Zeyu Zhang
    Danyang Yu
    Minseok Seo
    Craig P. Hersh
    Scott T. Weiss
    Weiliang Qiu
    Scientific Reports, 9
  • [13] Novel Data Transformations for RNA-seq Differential Expression Analysis
    Zhang, Zeyu
    Yu, Danyang
    Seo, Minseok
    Hersh, Craig P.
    Weiss, Scott T.
    Qiu, Weiliang
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [14] A comparison of methods for differential expression analysis of RNA-seq data
    Soneson, Charlotte
    Delorenzi, Mauro
    BMC BIOINFORMATICS, 2013, 14
  • [15] A comparison of methods for differential expression analysis of RNA-seq data
    Charlotte Soneson
    Mauro Delorenzi
    BMC Bioinformatics, 14
  • [16] Current best practices in single-cell RNA-seq analysis: a tutorial
    Luecken, Malte D.
    Theis, Fabian J.
    MOLECULAR SYSTEMS BIOLOGY, 2019, 15 (06)
  • [17] A statistical normalization method and differential expression analysis for RNA-seq data between different species
    Zhou, Yan
    Zhu, Jiadi
    Tong, Tiejun
    Wang, Junhui
    Lin, Bingqing
    Zhang, Jun
    BMC BIOINFORMATICS, 2019, 20 (1)
  • [18] Differential expression in RNA-seq: A matter of depth
    Tarazona, Sonia
    Garcia-Alcalde, Fernando
    Dopazo, Joaquin
    Ferrer, Alberto
    Conesa, Ana
    GENOME RESEARCH, 2011, 21 (12) : 2213 - 2223
  • [19] A statistical normalization method and differential expression analysis for RNA-seq data between different species
    Yan Zhou
    Jiadi Zhu
    Tiejun Tong
    Junhui Wang
    Bingqing Lin
    Jun Zhang
    BMC Bioinformatics, 20
  • [20] Evaluation of methods for differential expression analysis on multi-group RNA-seq count data
    Min Tang
    Jianqiang Sun
    Kentaro Shimizu
    Koji Kadota
    BMC Bioinformatics, 16