Best practices on the differential expression analysis of multi-species RNA-seq

被引:58
|
作者
Chung, Matthew [1 ,2 ]
Bruno, Vincent M. [1 ,2 ]
Rasko, David A. [1 ,2 ]
Cuomo, Christina A. [3 ]
Munoz, Jose F. [3 ]
Livny, Jonathan [3 ]
Shetty, Amol C. [1 ]
Mahurkar, Anup [1 ]
Dunning Hotopp, Julie C. [1 ,2 ,4 ]
机构
[1] Univ Maryland Sch Med, Inst Genome Sci, Baltimore, MD 21201 USA
[2] Univ Maryland Sch Med, Dept Microbiol & Immunol, Baltimore, MD 21201 USA
[3] Broad Inst, Infect Dis & Microbiome Program, Cambridge, MA 02142 USA
[4] Univ Maryland, Greenebaum Canc Ctr, Baltimore, MD 21201 USA
关键词
RNA-Seq; Transcriptomics; Best practices; Differential gene expression; SINGLE-CELL; MESSENGER-RNA; GENE-EXPRESSION; HOST; PATHOGEN; TRANSCRIPTOME; GENOME; BACTERIAL; QUANTIFICATION; EFFICIENT;
D O I
10.1186/s13059-021-02337-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Advances in transcriptome sequencing allow for simultaneous interrogation of differentially expressed genes from multiple species originating from a single RNA sample, termed dual or multi-species transcriptomics. Compared to single-species differential expression analysis, the design of multi-species differential expression experiments must account for the relative abundances of each organism of interest within the sample, often requiring enrichment methods and yielding differences in total read counts across samples. The analysis of multi-species transcriptomics datasets requires modifications to the alignment, quantification, and downstream analysis steps compared to the single-species analysis pipelines. We describe best practices for multi-species transcriptomics and differential gene expression.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Best practices on the differential expression analysis of multi-species RNA-seq
    Matthew Chung
    Vincent M. Bruno
    David A. Rasko
    Christina A. Cuomo
    José F. Muñoz
    Jonathan Livny
    Amol C. Shetty
    Anup Mahurkar
    Julie C. Dunning Hotopp
    Genome Biology, 22
  • [2] A survey of best practices for RNA-seq data analysis
    Ana Conesa
    Pedro Madrigal
    Sonia Tarazona
    David Gomez-Cabrero
    Alejandra Cervera
    Andrew McPherson
    Michał Wojciech Szcześniak
    Daniel J. Gaffney
    Laura L. Elo
    Xuegong Zhang
    Ali Mortazavi
    Genome Biology, 17
  • [3] A survey of best practices for RNA-seq data analysis
    Conesa, Ana
    Madrigal, Pedro
    Tarazona, Sonia
    Gomez-Cabrero, David
    Cervera, Alejandra
    McPherson, Andrew
    Szczesniak, Michal Wojciech
    Gaffney, Daniel J.
    Elo, Laura L.
    Zhang, Xuegong
    Mortazavi, Ali
    GENOME BIOLOGY, 2016, 17
  • [4] Erratum to: A survey of best practices for RNA-seq data analysis
    Ana Conesa
    Pedro Madrigal
    Sonia Tarazona
    David Gomez-Cabrero
    Alejandra Cervera
    Andrew McPherson
    Michal Wojciech Szcześniak
    Daniel J. Gaffney
    Laura L. Elo
    Xuegong Zhang
    Ali Mortazavi
    Genome Biology, 17
  • [5] Power analysis for RNA-Seq differential expression studies
    Yu, Lianbo
    Fernandez, Soledad
    Brock, Guy
    BMC BIOINFORMATICS, 2017, 18
  • [6] Differential expression analysis for paired RNA-seq data
    Chung, Lisa M.
    Ferguson, John P.
    Zheng, Wei
    Qian, Feng
    Bruno, Vincent
    Montgomery, Ruth R.
    Zhao, Hongyu
    BMC BIOINFORMATICS, 2013, 14 : 110
  • [7] Power analysis for RNA-Seq differential expression studies
    Lianbo Yu
    Soledad Fernandez
    Guy Brock
    BMC Bioinformatics, 18
  • [8] Differential expression analysis for paired RNA-seq data
    Lisa M Chung
    John P Ferguson
    Wei Zheng
    Feng Qian
    Vincent Bruno
    Ruth R Montgomery
    Hongyu Zhao
    BMC Bioinformatics, 14
  • [9] Robustness of differential gene expression analysis of RNA-seq
    Stupnikov, A.
    McInerney, C. E.
    Savage, K. I.
    McIntosh, S. A.
    Emmert-Streib, F.
    Kennedy, R.
    Salto-Tellez, M.
    Prise, K. M.
    McArt, D. G.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3470 - 3481
  • [10] Stability of methods for differential expression analysis of RNA-seq data
    Bingqing Lin
    Zhen Pang
    BMC Genomics, 20