Band-gap engineering of SnO2

被引:72
|
作者
Mounkachi, O. [1 ]
Salmani, E. [2 ]
Lakhal, M. [1 ,2 ]
Ez-Zahraouy, H. [2 ]
Hamedoun, M. [1 ]
Benaissa, M. [2 ]
Kara, A. [3 ]
Ennaoui, A. [4 ,5 ]
Benyoussef, A. [1 ,2 ]
机构
[1] MAScIR, Inst Nanomat & Nanotechnol, Rabat, Morocco
[2] Univ Mohammed 5, Fac Sci, LMPHE, Rabat, Morocco
[3] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
[4] QEERI, Doha, Qatar
[5] HBKU, Doha, Qatar
关键词
Semiconductors; SnO2; Multilayer; DFT; Band-gap engineering; QUANTUM CONFINEMENT; THIN-FILMS; TEMPERATURE; DEPOSITION; WIRES; DOTS;
D O I
10.1016/j.solmat.2015.09.062
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Using first principles calculations based on density functional theory (DFT), the electronic properties of SnO2 bulk and thin films are studied. The electronic band structures and total energy over a range of SnO2-multilayer have been studied using DFT within the local density approximation (LDA). We show that changing the interatomic distances and relative positions of atoms could modify the band-gap energy of SnO2 semiconductors. Electronic-structure calculations show that band-gap engineering is a powerful technique for the design of new promising candidates with a direct band-gap. Our results present an important advancement toward controlling the band structure and optoelectronic properties of few-layer SnO2 via strain engineering, with important implications for practical device applications. (C) 2015 Published by Elsevier B.V.
引用
收藏
页码:34 / 38
页数:5
相关论文
共 50 条
  • [41] Cr modified Raman, optical band gap and magnetic properties of SnO2 nanoparticles
    Agrahari, Vivek
    Mathpal, Mohan Chandra
    Kumar, Sachin
    Kumar, Mahendra
    Agarwal, Arvind
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2016, 27 (06) : 6020 - 6029
  • [42] Band-gap engineering via local environment in complex oxides
    Qi, Tingting
    Grinberg, Ilya
    Rappe, Andrew M.
    PHYSICAL REVIEW B, 2011, 83 (22):
  • [43] Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface
    Jahangir-Moghadam, Mohammadreza
    Ahmadi-Majlan, Kamyar
    Shen, Xuan
    Droubay, Timothy
    Bowden, Mark
    Chrysler, Matthew
    Su, Dong
    Chambers, Scott A.
    Ngai, Joseph H.
    ADVANCED MATERIALS INTERFACES, 2015, 2 (04):
  • [44] BAND-GAP ENGINEERING IN II-VI-BASED HETEROSTRUCTURES
    PAUTRAT, JL
    MONTERRAT, E
    ULMER, L
    MAGNEA, N
    MARIETTE, H
    BLEUSE, J
    JOUNEAU, PH
    JOURNAL OF CRYSTAL GROWTH, 1992, 117 (1-4) : 454 - 459
  • [45] Band-gap engineering in fluorographene nanoribbons under uniaxial strain
    Zhang, Yan
    Li, Qunxiang
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (04)
  • [46] Cr modified Raman, optical band gap and magnetic properties of SnO2 nanoparticles
    Vivek Agrahari
    Mohan Chandra Mathpal
    Sachin Kumar
    Mahendra Kumar
    Arvind Agarwal
    Journal of Materials Science: Materials in Electronics, 2016, 27 : 6020 - 6029
  • [47] BAND-GAP ENGINEERING FOR NEW PHOTONIC AND ELECTRONIC DEVICES.
    Capasso, Federico
    Nuclear instruments and methods in physics research, 1987, A265 (1-2): : 112 - 119
  • [48] Band-Gap Engineering with Hybrid Graphane-Graphene Nanoribbons
    Lu, Y. H.
    Feng, Y. P.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (49): : 20841 - 20844
  • [49] Controlling optical beam thermalization via band-gap engineering
    Shi, Cheng
    Kottos, Tsampikos
    Shapiro, Boris
    PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [50] Band-gap engineering by Bi intercalation of graphene on Ir(111)
    Warmuth, Jonas
    Bruix, Albert
    Michiardi, Matteo
    Haenke, Torben
    Bianchi, Marco
    Wiebe, Jens
    Wiesendanger, Roland
    Hammer, Bjork
    Hofmann, Philip
    Khajetoorians, Alexander A.
    PHYSICAL REVIEW B, 2016, 93 (16)