Band-gap engineering of SnO2

被引:72
|
作者
Mounkachi, O. [1 ]
Salmani, E. [2 ]
Lakhal, M. [1 ,2 ]
Ez-Zahraouy, H. [2 ]
Hamedoun, M. [1 ]
Benaissa, M. [2 ]
Kara, A. [3 ]
Ennaoui, A. [4 ,5 ]
Benyoussef, A. [1 ,2 ]
机构
[1] MAScIR, Inst Nanomat & Nanotechnol, Rabat, Morocco
[2] Univ Mohammed 5, Fac Sci, LMPHE, Rabat, Morocco
[3] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
[4] QEERI, Doha, Qatar
[5] HBKU, Doha, Qatar
关键词
Semiconductors; SnO2; Multilayer; DFT; Band-gap engineering; QUANTUM CONFINEMENT; THIN-FILMS; TEMPERATURE; DEPOSITION; WIRES; DOTS;
D O I
10.1016/j.solmat.2015.09.062
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Using first principles calculations based on density functional theory (DFT), the electronic properties of SnO2 bulk and thin films are studied. The electronic band structures and total energy over a range of SnO2-multilayer have been studied using DFT within the local density approximation (LDA). We show that changing the interatomic distances and relative positions of atoms could modify the band-gap energy of SnO2 semiconductors. Electronic-structure calculations show that band-gap engineering is a powerful technique for the design of new promising candidates with a direct band-gap. Our results present an important advancement toward controlling the band structure and optoelectronic properties of few-layer SnO2 via strain engineering, with important implications for practical device applications. (C) 2015 Published by Elsevier B.V.
引用
收藏
页码:34 / 38
页数:5
相关论文
共 50 条
  • [31] NEW HETEROJUNCTION DEVICES BY BAND-GAP ENGINEERING.
    Capasso, Federico
    1600, (129 B-C): : 1 - 3
  • [32] A Review on Energy Band-Gap Engineering for Perovskite Photovoltaics
    Hu, Zhaosheng
    Lin, Zhenhua
    Su, Jie
    Zhang, Jincheng
    Chang, Jingjing
    Hao, Yue
    SOLAR RRL, 2019, 3 (12):
  • [33] BAND-GAP ENGINEERING FOR NEW PHOTONIC AND ELECTRONIC DEVICES
    CAPASSO, F
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1988, 265 (1-2): : 112 - 119
  • [34] Halogenation of SiC for band-gap engineering and excitonic functionalization
    Drissi, L. B.
    Ramadan, F. Z.
    Lounis, S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (45)
  • [35] Strain-induced optical band gap variation of SnO2 films
    Rus, S. F.
    Ward, T. Z.
    Herklotz, A.
    THIN SOLID FILMS, 2016, 615 : 103 - 106
  • [36] Band gap energy modifications observed in trivalent In substituted nanocrystalline SnO2
    Drake, C.
    Seal, S.
    APPLIED PHYSICS LETTERS, 2007, 90 (23)
  • [37] Optical band gap tuning of discontinuous [SnO2/Mn]n multilayers
    Saipriya, S.
    Singh, R.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (38) : 9318 - 9321
  • [38] Role of Ba in engineering band gap, photoluminescence and nonlinear optical properties of SnO2 nanostructures for photovoltaic and photocatalytic applications
    Bannur, M. S.
    Antony, Albin
    Maddani, K. I.
    Poornesh, P.
    Manjunatha, K. B.
    Kulkarni, Suresh D.
    Choudhari, K. S.
    SUPERLATTICES AND MICROSTRUCTURES, 2018, 122 : 156 - 164
  • [39] Band-gap engineering in CuIn(Se,S)2 absorbers for solar cells
    Bekker, J.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (05) : 539 - 543
  • [40] Study of band-gap characteristics for curved electromagnetic band-gap structures
    Liu, Tao
    Cao, Xiang-Yu
    Yin, Zhao-Wei
    Zhang, Guang
    TENCON 2006 - 2006 IEEE REGION 10 CONFERENCE, VOLS 1-4, 2006, : 1463 - +