Band-gap engineering of SnO2

被引:72
|
作者
Mounkachi, O. [1 ]
Salmani, E. [2 ]
Lakhal, M. [1 ,2 ]
Ez-Zahraouy, H. [2 ]
Hamedoun, M. [1 ]
Benaissa, M. [2 ]
Kara, A. [3 ]
Ennaoui, A. [4 ,5 ]
Benyoussef, A. [1 ,2 ]
机构
[1] MAScIR, Inst Nanomat & Nanotechnol, Rabat, Morocco
[2] Univ Mohammed 5, Fac Sci, LMPHE, Rabat, Morocco
[3] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
[4] QEERI, Doha, Qatar
[5] HBKU, Doha, Qatar
关键词
Semiconductors; SnO2; Multilayer; DFT; Band-gap engineering; QUANTUM CONFINEMENT; THIN-FILMS; TEMPERATURE; DEPOSITION; WIRES; DOTS;
D O I
10.1016/j.solmat.2015.09.062
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Using first principles calculations based on density functional theory (DFT), the electronic properties of SnO2 bulk and thin films are studied. The electronic band structures and total energy over a range of SnO2-multilayer have been studied using DFT within the local density approximation (LDA). We show that changing the interatomic distances and relative positions of atoms could modify the band-gap energy of SnO2 semiconductors. Electronic-structure calculations show that band-gap engineering is a powerful technique for the design of new promising candidates with a direct band-gap. Our results present an important advancement toward controlling the band structure and optoelectronic properties of few-layer SnO2 via strain engineering, with important implications for practical device applications. (C) 2015 Published by Elsevier B.V.
引用
收藏
页码:34 / 38
页数:5
相关论文
共 50 条
  • [21] Highly Monochromatic Ultraviolet LED Based on the SnO2 Microwire Heterojunction Beyond Dipole-Forbidden Band-Gap Transition
    Liu, Maosheng
    Yang, Zhenyu
    Sha, Shulin
    Tang, Kai
    Wan, Peng
    Kan, Caixia
    Shi, Da Ning
    Jiang, Mingming
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (47) : 54655 - 54666
  • [22] Band-gap engineering in TiO2-based ternary oxides
    McLeod, J. A.
    Green, R. J.
    Kurmaev, E. Z.
    Kumada, N.
    Belik, A. A.
    Moewes, A.
    PHYSICAL REVIEW B, 2012, 85 (19):
  • [23] Near-band edge UV emission and band gap engineering of highly transparent Ba:SnO2 nanocrystalline thin films
    Islam, Md Ariful
    Mou, Jannatul Robaiat
    Hossain, Md Faruk
    Hossain, Md Sazzad
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 1552 - 1555
  • [24] Band-Gap Engineering of Polythiophenes via Dithienophosphole Doping
    Krueger, Robin A.
    Gordon, Terry J.
    Sutherland, Todd C.
    Baumgartner, Thomas
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2011, 49 (05) : 1201 - 1209
  • [25] Spin and band-gap engineering in doped graphene nanoribbons
    Gorjizadeh, Narjes
    Farajian, Amir A.
    Esfarjani, Keivan
    Kawazoe, Yoshiyuki
    PHYSICAL REVIEW B, 2008, 78 (15):
  • [26] Band-Gap Engineering of Carbon Nanotubes with Grain Boundaries
    Wang, Zhiguo
    Zhou, Yungang
    Zhang, Yanwen
    Gao, Fei
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (03): : 2271 - 2277
  • [27] Photonic band-gap engineering of quasiperiodic photonic crystals
    Wang, YQ
    Jian, SS
    Han, SZ
    Feng, S
    Feng, ZF
    Cheng, BY
    Zhang, DZ
    JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
  • [28] Photonic band-gap engineering of quasiperiodic photonic crystals
    Wang, Yiquan
    Jian, Shuisheng
    Han, Shouzhen
    Feng, Shuai
    Feng, Zhifang
    Cheng, Bingying
    Zhang, Daozhong
    Journal of Applied Physics, 2005, 97 (10):
  • [29] Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles
    Ahmed, Arham S.
    Muhamed, Shafeeq M.
    Singla, M. L.
    Tabassum, Sartaj
    Naqvi, Alim H.
    Azam, Ameer
    JOURNAL OF LUMINESCENCE, 2011, 131 (01) : 1 - 6
  • [30] Preparation of Band Gap Tunable SnO2 Nanotubes and Their Ethanol Sensing Properties
    Shi, Liang
    Lin, Hailin
    LANGMUIR, 2011, 27 (07) : 3977 - 3981