A Combined PLS and Negative Binomial Regression Model for Inferring Association Networks from Next-Generation Sequencing Count Data

被引:3
|
作者
Pesonen, Maiju [1 ]
Nevalainen, Jaakko [2 ]
Potter, Steven [3 ]
Datta, Somnath [4 ]
Datta, Susmita [4 ]
机构
[1] Aalto Univ, Dept Comp Sci, Espoo 02150, Finland
[2] Univ Tampere, Sch Hlth Sci, Tampere 33100, Finland
[3] Cincinnati Childrens Med Ctr, Div Dev Biol, Cincinnati, OH 45229 USA
[4] Univ Florida, Dept Biostat, Gainesville, FL 32611 USA
关键词
Association networks; network reconstruction; negative binomial regression; next-generation sequencing; partial least-squares regression; INTERPRETING CORRELATIONS; CLEFT-LIP; GENE; SELECTION; PACKAGE;
D O I
10.1109/TCBB.2017.2665495
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A major challenge of genomics data is to detect interactions displaying functional associations from large-scale observations. In this study, a new cPLS-algorithm combining partial least squares approach with negative binomial regression is suggested to reconstruct a genomic association network for high-dimensional next-generation sequencing count data. The suggested approach is applicable to the raw counts data, without requiring any further pre-processing steps. In the settings investigated, the cPLS-algorithm outperformed the two widely used comparative methods, graphical lasso, and weighted correlation network analysis. In addition, cPLS is able to estimate the full network for thousands of genes without major computational load. Finally, we demonstrate that cPLS is capable of finding biologically meaningful associations by analyzing an example data set from a previously published study to examine the molecular anatomy of the craniofacial development.
引用
收藏
页码:760 / 773
页数:14
相关论文
共 50 条
  • [41] Goodness-of-Fit Tests and Model Diagnostics for Negative Binomial Regression of RNA Sequencing Data
    Mi, Gu
    Di, Yanming
    Schafer, Daniel W.
    PLOS ONE, 2015, 10 (03):
  • [42] Rare Variant Association Testing for Next-Generation Sequencing Data via Hierarchical Clustering
    Tachmazidou, Ioanna
    Morris, Andrew
    Zeggini, Eleftheria
    HUMAN HEREDITY, 2012, 74 (3-4) : 165 - 171
  • [43] Linear mixed models for association analysis of quantitative traits with next-generation sequencing data
    Chiu, Chi-yang
    Yuan, Fang
    Zhang, Bingsong
    Yuan, Ao
    Li, Xin
    Fang, Hong-Bin
    Lange, Kenneth
    Weeks, Daniel E.
    Wilson, Alexander F.
    Bailey-Wilson, Joan E.
    Musolf, Anthony M.
    Stambolian, Dwight
    Lakhal-Chaieb, M'Hamed Lajmi
    Cook, Richard J.
    McMahon, Francis J.
    Amos, Christopher I.
    Xiong, Momiao
    Fan, Ruzong
    GENETIC EPIDEMIOLOGY, 2019, 43 (02) : 189 - 206
  • [44] Design of Association Studies with Pooled or Un-pooled Next-Generation Sequencing Data
    Kim, Su Yeon
    Li, Yingrui
    Guo, Yiran
    Li, Ruiqiang
    Holmkvist, Johan
    Hansen, Torben
    Pedersen, Oluf
    Wang, Jun
    Nielsen, Rasmus
    GENETIC EPIDEMIOLOGY, 2010, 34 (05) : 479 - 491
  • [45] Offline Fault Detection in Gene Regulatory Networks using Next-Generation Sequencing Data
    Ghoreishi, Seyede Fatemeh
    Imani, Mahdi
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 1344 - 1348
  • [46] A Local Poisson Graphical Model for Inferring Networks From Sequencing Data
    Allen, Genevera I.
    Liu, Zhandong
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2013, 12 (03) : 189 - 198
  • [47] Higher order asymptotics for negative binomial regression inferences from RNA-sequencing data
    Di, Yanming
    Emerson, Sarah C.
    Schafer, Daniel W.
    Kimbrel, Jeffrey A.
    Chang, Jeff H.
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2013, 12 (01) : 49 - 70
  • [48] BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data
    Narasimhan, Vagheesh
    Danecek, Petr
    Scally, Aylwyn
    Xue, Yali
    Tyler-Smith, Chris
    Durbin, Richard
    BIOINFORMATICS, 2016, 32 (11) : 1749 - 1751
  • [49] Robust inference of population structure from next-generation sequencing data with systematic differences in sequencing
    Liao, Peizhou
    Satten, Glen A.
    Hu, Yi-Juan
    BIOINFORMATICS, 2018, 34 (07) : 1157 - 1163
  • [50] ConPADE: Genome Assembly Ploidy Estimation from Next-Generation Sequencing Data
    Margarido, Gabriel R. A.
    Heckerman, David
    PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (04)