A Combined PLS and Negative Binomial Regression Model for Inferring Association Networks from Next-Generation Sequencing Count Data

被引:3
|
作者
Pesonen, Maiju [1 ]
Nevalainen, Jaakko [2 ]
Potter, Steven [3 ]
Datta, Somnath [4 ]
Datta, Susmita [4 ]
机构
[1] Aalto Univ, Dept Comp Sci, Espoo 02150, Finland
[2] Univ Tampere, Sch Hlth Sci, Tampere 33100, Finland
[3] Cincinnati Childrens Med Ctr, Div Dev Biol, Cincinnati, OH 45229 USA
[4] Univ Florida, Dept Biostat, Gainesville, FL 32611 USA
关键词
Association networks; network reconstruction; negative binomial regression; next-generation sequencing; partial least-squares regression; INTERPRETING CORRELATIONS; CLEFT-LIP; GENE; SELECTION; PACKAGE;
D O I
10.1109/TCBB.2017.2665495
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A major challenge of genomics data is to detect interactions displaying functional associations from large-scale observations. In this study, a new cPLS-algorithm combining partial least squares approach with negative binomial regression is suggested to reconstruct a genomic association network for high-dimensional next-generation sequencing count data. The suggested approach is applicable to the raw counts data, without requiring any further pre-processing steps. In the settings investigated, the cPLS-algorithm outperformed the two widely used comparative methods, graphical lasso, and weighted correlation network analysis. In addition, cPLS is able to estimate the full network for thousands of genes without major computational load. Finally, we demonstrate that cPLS is capable of finding biologically meaningful associations by analyzing an example data set from a previously published study to examine the molecular anatomy of the craniofacial development.
引用
收藏
页码:760 / 773
页数:14
相关论文
共 50 条
  • [21] Estimation of allele frequency and association mapping using next-generation sequencing data
    Kim, Su Yeon
    Lohmueller, Kirk E.
    Albrechtsen, Anders
    Li, Yingrui
    Korneliussen, Thorfinn
    Tian, Geng
    Grarup, Niels
    Jiang, Tao
    Andersen, Gitte
    Witte, Daniel
    Jorgensen, Torben
    Hansen, Torben
    Pedersen, Oluf
    Wang, Jun
    Nielsen, Rasmus
    BMC BIOINFORMATICS, 2011, 12
  • [22] Estimation of allele frequency and association mapping using next-generation sequencing data
    Su Yeon Kim
    Kirk E Lohmueller
    Anders Albrechtsen
    Yingrui Li
    Thorfinn Korneliussen
    Geng Tian
    Niels Grarup
    Tao Jiang
    Gitte Andersen
    Daniel Witte
    Torben Jorgensen
    Torben Hansen
    Oluf Pedersen
    Jun Wang
    Rasmus Nielsen
    BMC Bioinformatics, 12
  • [23] A bivariate zero-inflated negative binomial regression model for count data with excess zeros
    Wang, PM
    ECONOMICS LETTERS, 2003, 78 (03) : 373 - 378
  • [24] Inferences of human adaptive evolution from next-generation sequencing data
    Akey, Joshua M.
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 2012, 147 : 81 - 81
  • [25] The global prevalence of Wilson disease from next-generation sequencing data
    Gao, Jiali
    Brackley, Simon
    Mann, Jake P.
    GENETICS IN MEDICINE, 2019, 21 (05) : 1155 - 1163
  • [26] The global prevalence of Wilson disease from next-generation sequencing data
    Brackley, S.
    Gao, J.
    Mann, J.
    JOURNAL OF HEPATOLOGY, 2018, 68 : S77 - S77
  • [27] Detection of genomic structural variants from next-generation sequencing data
    Tattini, Lorenzo
    D'Aurizio, Romina
    Magi, Alberto
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2015, 3
  • [28] Improving the estimation of genetic distances from Next-Generation Sequencing data
    Vieira, Filipe G.
    Lassalle, Florent
    Korneliussen, Thorfinn S.
    Fumagalli, Matteo
    BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, 2016, 117 (01) : 139 - 149
  • [29] RetroSeq: transposable element discovery from next-generation sequencing data
    Keane, Thomas M.
    Wong, Kim
    Adams, David J.
    BIOINFORMATICS, 2013, 29 (03) : 389 - 390
  • [30] Addressing Key Data Issues Arising from Next-Generation Sequencing
    Genetic Engineering and Biotechnology News, 2022, 42 (05):