A Combined PLS and Negative Binomial Regression Model for Inferring Association Networks from Next-Generation Sequencing Count Data

被引:3
|
作者
Pesonen, Maiju [1 ]
Nevalainen, Jaakko [2 ]
Potter, Steven [3 ]
Datta, Somnath [4 ]
Datta, Susmita [4 ]
机构
[1] Aalto Univ, Dept Comp Sci, Espoo 02150, Finland
[2] Univ Tampere, Sch Hlth Sci, Tampere 33100, Finland
[3] Cincinnati Childrens Med Ctr, Div Dev Biol, Cincinnati, OH 45229 USA
[4] Univ Florida, Dept Biostat, Gainesville, FL 32611 USA
关键词
Association networks; network reconstruction; negative binomial regression; next-generation sequencing; partial least-squares regression; INTERPRETING CORRELATIONS; CLEFT-LIP; GENE; SELECTION; PACKAGE;
D O I
10.1109/TCBB.2017.2665495
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A major challenge of genomics data is to detect interactions displaying functional associations from large-scale observations. In this study, a new cPLS-algorithm combining partial least squares approach with negative binomial regression is suggested to reconstruct a genomic association network for high-dimensional next-generation sequencing count data. The suggested approach is applicable to the raw counts data, without requiring any further pre-processing steps. In the settings investigated, the cPLS-algorithm outperformed the two widely used comparative methods, graphical lasso, and weighted correlation network analysis. In addition, cPLS is able to estimate the full network for thousands of genes without major computational load. Finally, we demonstrate that cPLS is capable of finding biologically meaningful associations by analyzing an example data set from a previously published study to examine the molecular anatomy of the craniofacial development.
引用
收藏
页码:760 / 773
页数:14
相关论文
共 50 条
  • [31] Consensus Rules in Variant Detection from Next-Generation Sequencing Data
    Jia, Peilin
    Li, Fei
    Xia, Jufeng
    Chen, Haiquan
    Ji, Hongbin
    Pao, William
    Zhao, Zhongming
    PLOS ONE, 2012, 7 (06):
  • [32] Quantifying Population Genetic Differentiation from Next-Generation Sequencing Data
    Fumagalli, Matteo
    Vieira, Filipe G.
    Korneliussen, Thorfinn Sand
    Linderoth, Tyler
    Huerta-Sanchez, Emilia
    Albrechtsen, Anders
    Nielsen, Rasmus
    GENETICS, 2013, 195 (03) : 979 - +
  • [33] PATMAP: Polyadenylation Site Identification from Next-Generation Sequencing Data
    Wu, Xiaohui
    Tang, Meishuang
    Yao, Junfeng
    Lin, Shuiyuan
    Xiang, Zhe
    Ji, Guoli
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT I, 2012, 7208 : 485 - 496
  • [34] De novo assembly of transcriptome from next-generation sequencing data
    Xuan Li
    Yimeng Kong
    QiongYi Zhao
    YuanYuan Li
    Pei Hao
    Quantitative Biology, 2016, 4 (02) : 94 - 105
  • [35] pTuneos: prioritizing tumor neoantigens from next-generation sequencing data
    Chi Zhou
    Zhiting Wei
    Zhanbing Zhang
    Biyu Zhang
    Chenyu Zhu
    Ke Chen
    Guohui Chuai
    Sheng Qu
    Lu Xie
    Yong Gao
    Qi Liu
    Genome Medicine, 11
  • [36] pTuneos: prioritizing tumor neoantigens from next-generation sequencing data
    Zhou, Chi
    Wei, Zhiting
    Zhang, Zhanbing
    Zhang, Biyu
    Zhu, Chenyu
    Chen, Ke
    Chuai, Guohui
    Qu, Sheng
    Xie, Lu
    Gao, Yong
    Liu, Qi
    GENOME MEDICINE, 2019, 11 (01)
  • [37] OptiType: precision HLA typing from next-generation sequencing data
    Szolek, Andras
    Schubert, Benjamin
    Mohr, Christopher
    Sturm, Marc
    Feldhahn, Magdalena
    Kohlbacher, Oliver
    BIOINFORMATICS, 2014, 30 (23) : 3310 - 3316
  • [38] Detection of mutations in microsatellite region from next-generation sequencing data
    Fujimoto, Akihiro
    GENES & GENETIC SYSTEMS, 2014, 89 (06) : 329 - 329
  • [39] HomSI: a homozygous stretch identifier from next-generation sequencing data
    Gormez, Zeliha
    Bakir-Gungor, Burcu
    Sagiroglu, Mahmut Samil
    BIOINFORMATICS, 2014, 30 (03) : 445 - 447
  • [40] Estimating Fitness of Viral Quasispecies from Next-Generation Sequencing Data
    Seifert, David
    Beerenwinkel, Niko
    QUASISPECIES: FROM THEORY TO EXPERIMENTAL SYSTEMS, 2016, 392 : 181 - 200