A Combined PLS and Negative Binomial Regression Model for Inferring Association Networks from Next-Generation Sequencing Count Data

被引:3
|
作者
Pesonen, Maiju [1 ]
Nevalainen, Jaakko [2 ]
Potter, Steven [3 ]
Datta, Somnath [4 ]
Datta, Susmita [4 ]
机构
[1] Aalto Univ, Dept Comp Sci, Espoo 02150, Finland
[2] Univ Tampere, Sch Hlth Sci, Tampere 33100, Finland
[3] Cincinnati Childrens Med Ctr, Div Dev Biol, Cincinnati, OH 45229 USA
[4] Univ Florida, Dept Biostat, Gainesville, FL 32611 USA
关键词
Association networks; network reconstruction; negative binomial regression; next-generation sequencing; partial least-squares regression; INTERPRETING CORRELATIONS; CLEFT-LIP; GENE; SELECTION; PACKAGE;
D O I
10.1109/TCBB.2017.2665495
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A major challenge of genomics data is to detect interactions displaying functional associations from large-scale observations. In this study, a new cPLS-algorithm combining partial least squares approach with negative binomial regression is suggested to reconstruct a genomic association network for high-dimensional next-generation sequencing count data. The suggested approach is applicable to the raw counts data, without requiring any further pre-processing steps. In the settings investigated, the cPLS-algorithm outperformed the two widely used comparative methods, graphical lasso, and weighted correlation network analysis. In addition, cPLS is able to estimate the full network for thousands of genes without major computational load. Finally, we demonstrate that cPLS is capable of finding biologically meaningful associations by analyzing an example data set from a previously published study to examine the molecular anatomy of the craniofacial development.
引用
收藏
页码:760 / 773
页数:14
相关论文
共 50 条
  • [1] Environmental Monitoring: Inferring the Diatom Index from Next-Generation Sequencing Data
    Visco, Joana Amorim
    Apotheloz-Perret-Gentil, Laure
    Cordonier, Arielle
    Esling, Philippe
    Pillet, Loic
    Pawlowski, Jan
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (13) : 7597 - 7605
  • [2] Learning Ecological Networks from Next-Generation Sequencing Data
    Vacher, Corinne
    Tamaddoni-Nezhad, Alireza
    Kamenova, Stefaniya
    Peyrard, Nathalie
    Moalic, Yann
    Sabbadin, Regis
    Schwaller, Loic
    Chiquet, Julien
    Smith, M. Alex
    Vallance, Jessica
    Fievet, Virgil
    Jakuschkin, Boris
    Bohan, David A.
    ECOSYSTEM SERVICES: FROM BIODIVERSITY TO SOCIETY, PT 2, 2016, 54 : 1 - 39
  • [3] Message Passing Algorithm for Inferring Consensus Sequence from Next-Generation Sequencing Data
    Shen, Xiaohu
    Shamaiah, Manohar
    Vikalo, Haris
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 1631 - +
  • [4] Hurdle negative binomial regression model with right censored count data
    Saffari, Seyed Ehsan
    Adnan, Robiah
    Greene, William
    SORT, 2012, 36 (02): : 181 - 194
  • [5] Hurdle negative binomial regression model with right censored count data
    Saffari, Seyed Ehsan
    Adnan, Robiah
    Greene, William
    SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2012, 36 (02) : 181 - 193
  • [6] Model Testing of PluriTest with Next-Generation Sequencing Data
    Schulze, Markus
    Hoja, Sabine
    Winner, Beate
    Winkler, Juergen
    Edenhofer, Frank
    Riemenschneider, Markus J.
    STEM CELLS AND DEVELOPMENT, 2016, 25 (07) : 569 - 571
  • [7] The Genome Assembly Model for Next-Generation Sequencing Data
    Wang, Yirong
    Wei, Chengdong
    Zhang, Xiaodong
    Cen, Tailin
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING AND STATISTICS APPLICATION (AMMSA 2017), 2017, 141 : 97 - 101
  • [8] Inferring Population Structure and Admixture Proportions in Low Depth Next-Generation Sequencing Data
    Meisner, Jonas
    Albrechtsen, Anders
    HUMAN HEREDITY, 2017, 83 (01) : 17 - 18
  • [9] Gene-set association tests for next-generation sequencing data
    Lee, Jaehoon
    Kim, Young Jin
    Lee, Juyoung
    Kim, Bong-Jo
    Lee, Seungyeoun
    Park, Taesung
    BIOINFORMATICS, 2016, 32 (17) : 611 - 619
  • [10] Association Testing for Next-Generation Sequencing Data Using Score Statistics
    Skotte, Line
    Korneliussen, Thorfinn Sand
    Albrechtsen, Anders
    GENETIC EPIDEMIOLOGY, 2012, 36 (05) : 430 - 437