The morphology of nodal lines - random waves versus percolation

被引:22
|
作者
Foltin, G [1 ]
Gnutzmann, S
Smilansky, U
机构
[1] Weizmann Inst Sci, Dept Phys & Complex Syst, IL-76100 Rehovot, Israel
[2] Free Univ Berlin, Inst Theoret Phys, D-14195 Berlin, Germany
来源
关键词
D O I
10.1088/0305-4470/37/47/005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we investigate the properties of nodal structures in random wave fields, and in particular we scrutinize their recently proposed connection with short-range percolation models. We propose a measure which shows the difference between monochromatic random waves, which are characterized by long-range correlations, and Gaussian fields with short-range correlations, which are naturally assumed to be better modelled by percolation theory. We also study the relevance of the quantities which we compute to the probability that nodal lines are in the vicinity of a given reference line.
引用
收藏
页码:11363 / 11371
页数:9
相关论文
共 50 条
  • [1] Percolation of random nodal lines
    Beffara, Vincent
    Gayet, Damien
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2017, 126 (01): : 131 - 176
  • [2] Percolation of random nodal lines
    Vincent Beffara
    Damien Gayet
    Publications mathématiques de l'IHÉS, 2017, 126 : 131 - 176
  • [3] Counting Open Nodal Lines of Random Waves on Planar Domains
    Toth, John A.
    Wigman, Igor
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (18) : 3337 - 3365
  • [4] Random Complex Zeroes and Random Nodal Lines
    Nazarov, Fedor
    Sodin, Mikhail
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL III: INVITED LECTURES, 2010, : 1450 - 1484
  • [5] Nodal Statistics of Planar Random Waves
    Nourdin, Ivan
    Peccati, Giovanni
    Rossi, Maurizia
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 369 (01) : 99 - 151
  • [6] Nodal Statistics of Planar Random Waves
    Ivan Nourdin
    Giovanni Peccati
    Maurizia Rossi
    Communications in Mathematical Physics, 2019, 369 : 99 - 151
  • [7] SLE description of the nodal lines of random wavefunctions
    Bogomolny, E.
    Dubertrand, R.
    Schmit, C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (03) : 381 - 395
  • [8] On the nodal lines of random and deterministic Laplace eigenfunctions
    Wigman, Igor
    SPECTRAL GEOMETRY, 2012, 84 : 285 - 297
  • [9] The Number of Nodal Components of Arithmetic Random Waves
    Rozenshein, Yoni
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (22) : 6990 - 7027
  • [10] Nodal densities of planar gaussian random waves
    M. R. Dennis
    The European Physical Journal Special Topics, 2007, 145 : 191 - 210