The morphology of nodal lines - random waves versus percolation

被引:22
|
作者
Foltin, G [1 ]
Gnutzmann, S
Smilansky, U
机构
[1] Weizmann Inst Sci, Dept Phys & Complex Syst, IL-76100 Rehovot, Israel
[2] Free Univ Berlin, Inst Theoret Phys, D-14195 Berlin, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 47期
关键词
D O I
10.1088/0305-4470/37/47/005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we investigate the properties of nodal structures in random wave fields, and in particular we scrutinize their recently proposed connection with short-range percolation models. We propose a measure which shows the difference between monochromatic random waves, which are characterized by long-range correlations, and Gaussian fields with short-range correlations, which are naturally assumed to be better modelled by percolation theory. We also study the relevance of the quantities which we compute to the probability that nodal lines are in the vicinity of a given reference line.
引用
收藏
页码:11363 / 11371
页数:9
相关论文
共 50 条
  • [41] Random Waves On T3: Nodal Area Variance and Lattice Point Correlations
    Benatar, Jacques
    Maffucci, Riccardo W.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (10) : 3032 - 3075
  • [42] Non-universal moderate deviation principle for the nodal length of arithmetic Random Waves
    Macci, Claudio
    Rossi, Maurizia
    Vidotto, Anna
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 21 : 1601 - 1624
  • [43] Crossover properties from random percolation to frustrated percolation
    Cannavacciuolo, L
    De Candia, A
    Coniglio, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1999, 10 (04): : 555 - 562
  • [44] Unusual percolation threshold of electromagnetic waves in double-zero medium embedded with random inclusions
    Luo, Jie
    Hang, Zhi Hong
    Chan, C. T.
    Lai, Yun
    LASER & PHOTONICS REVIEWS, 2015, 9 (05) : 523 - 529
  • [45] Percolation on random networks with proliferation
    Shang, Yilun
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2018, 32 (32):
  • [46] Exhaustive percolation on random networks
    Samuelsson, Bjorn
    Socolar, Joshua E. S.
    PHYSICAL REVIEW E, 2006, 74 (03)
  • [47] Oriented percolation in a random environment
    Kesten, Harry
    Sidoravicius, Vladas
    Vares, Maria Eulalia
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [48] PERCOLATION PROPERTIES OF RANDOM ELLIPSES
    XIA, W
    THORPE, MF
    PHYSICAL REVIEW A, 1988, 38 (05): : 2650 - 2656
  • [49] Percolation in a dependent random environment
    Jonasson, J
    Mossel, E
    Peres, Y
    RANDOM STRUCTURES & ALGORITHMS, 2000, 16 (04) : 333 - 343
  • [50] PERCOLATION IN A SYMMETRICAL RANDOM POTENTIAL
    HUND, M
    PHYSICA A, 1991, 175 (02): : 239 - 247