The morphology of nodal lines - random waves versus percolation

被引:22
|
作者
Foltin, G [1 ]
Gnutzmann, S
Smilansky, U
机构
[1] Weizmann Inst Sci, Dept Phys & Complex Syst, IL-76100 Rehovot, Israel
[2] Free Univ Berlin, Inst Theoret Phys, D-14195 Berlin, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 47期
关键词
D O I
10.1088/0305-4470/37/47/005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we investigate the properties of nodal structures in random wave fields, and in particular we scrutinize their recently proposed connection with short-range percolation models. We propose a measure which shows the difference between monochromatic random waves, which are characterized by long-range correlations, and Gaussian fields with short-range correlations, which are naturally assumed to be better modelled by percolation theory. We also study the relevance of the quantities which we compute to the probability that nodal lines are in the vicinity of a given reference line.
引用
收藏
页码:11363 / 11371
页数:9
相关论文
共 50 条
  • [21] Nodal set of monochromatic waves satisfying the Random Wave Model
    Romaniega, Alvaro
    Sartori, Andrea
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 333 : 1 - 54
  • [22] Nodal densities of Gaussian random waves satisfying mixed boundary conditions
    Berry, MV
    Ishio, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (29): : 5961 - 5972
  • [23] Planck-scale distribution of nodal length of arithmetic random waves
    Jacques Benatar
    Domenico Marinucci
    Igor Wigman
    Journal d'Analyse Mathématique, 2020, 141 : 707 - 749
  • [24] Statistics of nodal points of in-plane random waves in elastic media
    Maksimov, Dmitrii N.
    Sadreev, Almas F.
    PHYSICAL REVIEW E, 2008, 77 (05):
  • [25] Non-Universality of Nodal Length Distribution for Arithmetic Random Waves
    Domenico Marinucci
    Giovanni Peccati
    Maurizia Rossi
    Igor Wigman
    Geometric and Functional Analysis, 2016, 26 : 926 - 960
  • [26] Planck-scale distribution of nodal length of arithmetic random waves
    Benatar, Jacques
    Marinucci, Domenico
    Wigman, Igor
    JOURNAL D ANALYSE MATHEMATIQUE, 2020, 141 (02): : 707 - 749
  • [27] Non-Universality of Nodal Length Distribution for Arithmetic Random Waves
    Marinucci, Domenico
    Peccati, Giovanni
    Rossi, Maurizia
    Wigman, Igor
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (03) : 926 - 960
  • [28] Nodal Lines
    Burdzy, Krzysztof
    BROWNIAN MOTION AND ITS APPLICATIONS TO MATHEMATICAL ANALYSIS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLIII - 2013, 2014, 2106 : 89 - 96
  • [29] Nodal intersections for random waves against a segment on the 3-dimensional torus
    Maffucci, Riccardo W.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (12) : 5218 - 5254
  • [30] Spectral Quasi Correlations and Phase Transitions for the Nodal Length of Arithmetic Random Waves
    Sartori, Andrea
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (11) : 8472 - 8507