Percolation of random nodal lines

被引:0
|
作者
Vincent Beffara
Damien Gayet
机构
[1] Institut Fourier,Univ. Grenoble Alpes, CNRS
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove a Russo-Seymour-Welsh percolation theorem for nodal domains and nodal lines associated to a natural infinite dimensional space of real analytic functions on the real plane. More precisely, let U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U$\end{document} be a smooth connected bounded open set in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf{R}^{2}$\end{document} and γ,γ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma, \gamma '$\end{document} two disjoint arcs of positive length in the boundary of U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U$\end{document}. We prove that there exists a positive constant c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c$\end{document}, such that for any positive scale s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s$\end{document}, with probability at least c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c$\end{document} there exists a connected component of the set {x∈U¯,f(sx)>0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{x\in \smash{\bar{U}},\ f(sx) > 0\} $\end{document} intersecting both γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma $\end{document} and γ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma '$\end{document}, where f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f$\end{document} is a random analytic function in the Wiener space associated to the real Bargmann-Fock space. For s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s$\end{document} large enough, the same conclusion holds for the zero set {x∈U¯,f(sx)=0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{x\in \smash{\bar{U}},\ f(sx) = 0\} $\end{document}. As an important intermediate result, we prove that sign percolation for a general stationary Gaussian field can be made equivalent to a correlated percolation model on a lattice.
引用
收藏
页码:131 / 176
页数:45
相关论文
共 50 条
  • [1] Percolation of random nodal lines
    Beffara, Vincent
    Gayet, Damien
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2017, 126 (01): : 131 - 176
  • [2] The morphology of nodal lines - random waves versus percolation
    Foltin, G
    Gnutzmann, S
    Smilansky, U
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (47): : 11363 - 11371
  • [3] Random Complex Zeroes and Random Nodal Lines
    Nazarov, Fedor
    Sodin, Mikhail
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL III: INVITED LECTURES, 2010, : 1450 - 1484
  • [4] SLE description of the nodal lines of random wavefunctions
    Bogomolny, E.
    Dubertrand, R.
    Schmit, C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (03) : 381 - 395
  • [5] On the nodal lines of random and deterministic Laplace eigenfunctions
    Wigman, Igor
    SPECTRAL GEOMETRY, 2012, 84 : 285 - 297
  • [6] Counting Open Nodal Lines of Random Waves on Planar Domains
    Toth, John A.
    Wigman, Igor
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (18) : 3337 - 3365
  • [7] Nodal Lines
    Burdzy, Krzysztof
    BROWNIAN MOTION AND ITS APPLICATIONS TO MATHEMATICAL ANALYSIS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLIII - 2013, 2014, 2106 : 89 - 96
  • [8] PERCOLATION ON A RANDOM LATTICE
    KIM, DY
    HERRMANN, HJ
    LANDAU, DP
    PHYSICAL REVIEW B, 1987, 35 (07): : 3661 - 3662
  • [9] Random Majority Percolation
    Balister, Paul
    Bollobas, Bela
    Johnson, J. Robert
    Walters, Mark
    RANDOM STRUCTURES & ALGORITHMS, 2010, 36 (03) : 315 - 340
  • [10] Random wavefunctions and percolation
    Bogomolny, E.
    Schmit, C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (47) : 14033 - 14043