Integration, exploration, and analysis of high-dimensional single-cell cytometry data using Spectre

被引:76
|
作者
Ashhurst, Thomas Myles [1 ,2 ,3 ,4 ]
Marsh-Wakefield, Felix [4 ,5 ,6 ]
Putri, Givanna Haryono [4 ,7 ]
Spiteri, Alanna Gabrielle [4 ,8 ]
Shinko, Diana [1 ,2 ,4 ]
Read, Mark Norman [4 ,7 ,9 ]
Smith, Adrian Lloyd [1 ,2 ,4 ]
King, Nicholas Jonathan Cole [1 ,2 ,3 ,4 ,8 ,10 ]
机构
[1] Centenary Inst, Charles Perkins Ctr, Sydney Cytometry Core Res Facil, Sydney, NSW, Australia
[2] Univ Sydney, Sydney, NSW, Australia
[3] Univ Sydney, Marie Bashir Inst Infect Dis & Biosecur, Sydney, NSW, Australia
[4] Univ Sydney, Charles Perkins Ctr, Sydney, NSW, Australia
[5] Univ Sydney, Fac Med & Hlth, Sch Med Sci, Sydney, NSW, Australia
[6] Univ Sydney, Dept Pathol, Vasc Immunol Unit, Sydney, NSW, Australia
[7] Univ Sydney, Sch Comp Sci, Sydney, NSW, Australia
[8] Univ Sydney, Fac Med & Hlth, Sch Med Sci, Viral Immunopathol Lab,Discipline Pathol, Sydney, NSW, Australia
[9] Univ Sydney, Westmead Initiat, Sydney, NSW, Australia
[10] Univ Sydney, Sydney Nano, Sydney, NSW, Australia
基金
英国医学研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
clustering; computational analysis; dimensionality reduction; FlowSOM; high‐ dimensional cytometry; mass cytometry; spectral cytometry; t‐ SNE; UMAP; MASS CYTOMETRY; FLOW; REVEALS; IMMUNE; VISUALIZATION;
D O I
10.1002/cyto.a.24350
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
As the size and complexity of high-dimensional (HD) cytometry data continue to expand, comprehensive, scalable, and methodical computational analysis approaches are essential. Yet, contemporary clustering and dimensionality reduction tools alone are insufficient to analyze or reproduce analyses across large numbers of samples, batches, or experiments. Moreover, approaches that allow for the integration of data across batches or experiments are not well incorporated into computational toolkits to allow for streamlined workflows. Here we present Spectre, an R package that enables comprehensive end-to-end integration and analysis of HD cytometry data from different batches or experiments. Spectre streamlines the analytical stages of raw data pre-processing, batch alignment, data integration, clustering, dimensionality reduction, visualization, and population labelling, as well as quantitative and statistical analysis. Critically, the fundamental data structures used within Spectre, along with the implementation of machine learning classifiers, allow for the scalable analysis of very large HD datasets, generated by flow cytometry, mass cytometry, or spectral cytometry. Using open and flexible data structures, Spectre can also be used to analyze data generated by single-cell RNA sequencing or HD imaging technologies, such as Imaging Mass Cytometry. The simple, clear, and modular design of analysis workflows allow these tools to be used by bioinformaticians and laboratory scientists alike. Spectre is available as an R package or Docker container. R code is available on Github ().
引用
收藏
页码:237 / 253
页数:17
相关论文
共 50 条
  • [41] Exploration of Cell Development Pathways through High-Dimensional Single Cell Analysis in Trajectory Space
    Dermadi, Denis
    Bscheider, Michael
    Bjegovic, Kristina
    Lazarus, Nicole H.
    Szade, Agata
    Hadeiba, Husein
    Butcher, Eugene C.
    ISCIENCE, 2020, 23 (02)
  • [42] Making the most of high-dimensional cytometry data
    Marsh-Wakefield, Felix M. D.
    Mitchell, Andrew J.
    Norton, Samuel E.
    Ashhurst, Thomas Myles
    Leman, Julia K. H.
    Roberts, Joanna M.
    Harte, Jessica E.
    McGuire, Helen M.
    Kemp, Roslyn A.
    IMMUNOLOGY AND CELL BIOLOGY, 2021, 99 (07): : 680 - 696
  • [43] Exploration of High-Dimensional Nuclei Data
    Fuentes, Fernando
    Kettani, Houssain
    Ostrouchov, George
    Stoitsov, Mario
    Nam, Hai Ah
    2010 2ND INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2010), VOL 4, 2010, : 1 - 4
  • [44] A 31-plex panel for high-dimensional single-cell analysis of murine preclinical models of solid tumors by imaging mass cytometry
    Glasson, Yael
    Chepeaux, Laure-Agnes
    Dume, Anne-Sophie
    Jay, Philippe
    Pirot, Nelly
    Bonnefoy, Nathalie
    Michaud, Henri-Alexandre
    FRONTIERS IN IMMUNOLOGY, 2023, 13
  • [45] Using single-cell, high-dimensional approaches to unravel tumor heterogeneity in pediatric cancer
    Davis, Kara L.
    CANCER RESEARCH, 2020, 80 (14) : 29 - 30
  • [46] High-dimensional single-cell analysis reveals the immune characteristics of COVID-19
    Shi, Wen
    Liu, Xiuxing
    Cao, Qiqi
    Ma, Pengjuan
    Le, Wenqing
    Xie, Lihui
    Ye, Jinguo
    Wen, Wen
    Tang, Hao
    Su, Wenru
    Zheng, Yingfeng
    Liu, Yizhi
    AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2021, 320 (01) : L84 - L98
  • [47] CytoSPADE: high-performance analysis and visualization of high-dimensional cytometry data
    Linderman, Michael D.
    Bjornson, Zach
    Simonds, Erin F.
    Qiu, Peng
    Bruggner, Robert V.
    Sheode, Ketaki
    Meng, Teresa H.
    Plevritis, Sylvia K.
    Nolan, Garry P.
    BIOINFORMATICS, 2012, 28 (18) : 2400 - 2401
  • [48] High-Dimensional Single Cell Analysis Mass Cytometry, Multi-parametric Flow Cytometry and Bioinformatic Techniques Preface
    Fienberg, Harris G.
    Nolan, Garry P.
    HIGH-DIMENSIONAL SINGLE CELL ANALYSIS: MASS CYTOMETRY, MULTI-PARAMETRIC FLOW CYTOMETRY AND BIOINFORMATIC TECHNIQUES, 2014, 377 : VII - VIII
  • [49] Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria
    Galbusera, Luca
    Bellement-Theroue, Gwendoline
    Urchueguia, Arantxa
    Julou, Thomas
    van Nimwegen, Erik
    PLOS ONE, 2020, 15 (10):
  • [50] High-Dimensional Single-Cell Mass Cytometry Demonstrates Differential Platelet Functional Phenotypes in Infants With Congenital Heart Disease
    Gu, Sean X.
    Marcus, Brian S.
    Gu, Vivian W.
    Varghese, Adarsh P.
    Hwa, John
    Faustino, E. Vincent S.
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2024, 44 (12) : 2530 - 2539