Integration, exploration, and analysis of high-dimensional single-cell cytometry data using Spectre

被引:76
|
作者
Ashhurst, Thomas Myles [1 ,2 ,3 ,4 ]
Marsh-Wakefield, Felix [4 ,5 ,6 ]
Putri, Givanna Haryono [4 ,7 ]
Spiteri, Alanna Gabrielle [4 ,8 ]
Shinko, Diana [1 ,2 ,4 ]
Read, Mark Norman [4 ,7 ,9 ]
Smith, Adrian Lloyd [1 ,2 ,4 ]
King, Nicholas Jonathan Cole [1 ,2 ,3 ,4 ,8 ,10 ]
机构
[1] Centenary Inst, Charles Perkins Ctr, Sydney Cytometry Core Res Facil, Sydney, NSW, Australia
[2] Univ Sydney, Sydney, NSW, Australia
[3] Univ Sydney, Marie Bashir Inst Infect Dis & Biosecur, Sydney, NSW, Australia
[4] Univ Sydney, Charles Perkins Ctr, Sydney, NSW, Australia
[5] Univ Sydney, Fac Med & Hlth, Sch Med Sci, Sydney, NSW, Australia
[6] Univ Sydney, Dept Pathol, Vasc Immunol Unit, Sydney, NSW, Australia
[7] Univ Sydney, Sch Comp Sci, Sydney, NSW, Australia
[8] Univ Sydney, Fac Med & Hlth, Sch Med Sci, Viral Immunopathol Lab,Discipline Pathol, Sydney, NSW, Australia
[9] Univ Sydney, Westmead Initiat, Sydney, NSW, Australia
[10] Univ Sydney, Sydney Nano, Sydney, NSW, Australia
基金
英国医学研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
clustering; computational analysis; dimensionality reduction; FlowSOM; high‐ dimensional cytometry; mass cytometry; spectral cytometry; t‐ SNE; UMAP; MASS CYTOMETRY; FLOW; REVEALS; IMMUNE; VISUALIZATION;
D O I
10.1002/cyto.a.24350
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
As the size and complexity of high-dimensional (HD) cytometry data continue to expand, comprehensive, scalable, and methodical computational analysis approaches are essential. Yet, contemporary clustering and dimensionality reduction tools alone are insufficient to analyze or reproduce analyses across large numbers of samples, batches, or experiments. Moreover, approaches that allow for the integration of data across batches or experiments are not well incorporated into computational toolkits to allow for streamlined workflows. Here we present Spectre, an R package that enables comprehensive end-to-end integration and analysis of HD cytometry data from different batches or experiments. Spectre streamlines the analytical stages of raw data pre-processing, batch alignment, data integration, clustering, dimensionality reduction, visualization, and population labelling, as well as quantitative and statistical analysis. Critically, the fundamental data structures used within Spectre, along with the implementation of machine learning classifiers, allow for the scalable analysis of very large HD datasets, generated by flow cytometry, mass cytometry, or spectral cytometry. Using open and flexible data structures, Spectre can also be used to analyze data generated by single-cell RNA sequencing or HD imaging technologies, such as Imaging Mass Cytometry. The simple, clear, and modular design of analysis workflows allow these tools to be used by bioinformaticians and laboratory scientists alike. Spectre is available as an R package or Docker container. R code is available on Github ().
引用
收藏
页码:237 / 253
页数:17
相关论文
共 50 条
  • [21] High-dimensional single-cell analysis of human natural killer cell heterogeneity
    Rebuffet, Lucas
    Melsen, Janine E.
    Escaliere, Bertrand
    Basurto-Lozada, Daniela
    Bhandoola, Avinash
    Bjorkstrom, Niklas K.
    Bryceson, Yenan T.
    Castriconi, Roberta
    Cichocki, Frank
    Colonna, Marco
    Davis, Daniel M.
    Diefenbach, Andreas
    Ding, Yi
    Haniffa, Muzlifah
    Horowitz, Amir
    Lanier, Lewis L.
    Malmberg, Karl-Johan
    Miller, Jeffrey S.
    Moretta, Lorenzo
    Narni-Mancinelli, Emilie
    O'Neill, Luke A. J.
    Romagnani, Chiara
    Ryan, Dylan G.
    Sivori, Simona
    Sun, Dan
    Vagne, Constance
    Vivier, Eric
    NATURE IMMUNOLOGY, 2024, 25 (08) : 1474 - 1488
  • [22] Analyzing high-dimensional cytometry data using FlowSOM
    Quintelier, Katrien
    Couckuyt, Artuur
    Emmaneel, Annelies
    Aerts, Joachim
    Saeys, Yvan
    Van Gassen, Sofie
    NATURE PROTOCOLS, 2021, 16 (08) : 3775 - 3801
  • [23] High-Dimensional Overdispersed Generalized Factor Model With Application to Single-Cell Sequencing Data Analysis
    Nie, Jinyu
    Qin, Zhilong
    Liu, Wei
    STATISTICS IN MEDICINE, 2024, 43 (25) : 4836 - 4849
  • [24] High-Dimensional Single-Cell Analysis of Human Natural Killer Cell Heterogeneity
    Rebuffet, Lucas
    Janine, Melsen
    Bertrand, Escaliere
    Daniela, Basurto Lozada
    Avinash, Bhandoola
    Niklas, Bjorkstrom
    Bryceson, Yenan
    Castriconi, Roberta
    Franck, Cichocki
    Colonna, Marco
    Daniel, M. Davis
    Diefenbach, Andreas
    Muzlifah, Haniffa
    Amir, Horowitz
    Lewis, Lanier
    Karl-Johan, Malmberg
    Jeffrey, Miller
    Moretta, Lorenzo
    Emilie, Narni-Mancinelli
    O'Neill, Luke
    Romagnani, Chiara
    Ryan, Dylan
    Sivori, Simona
    Constance, Vagne
    Eric, Vivier
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2024, 54 : 1212 - 1213
  • [25] Analyzing high-dimensional cytometry data using FlowSOM
    Katrien Quintelier
    Artuur Couckuyt
    Annelies Emmaneel
    Joachim Aerts
    Yvan Saeys
    Sofie Van Gassen
    Nature Protocols, 2021, 16 : 3775 - 3801
  • [26] Applying high-dimensional single-cell technologies to the analysis of cancer immunotherapy
    Gohil, Satyen H.
    Iorgulescu, J. Bryan
    Braun, David A.
    Keskin, Derin B.
    Livak, Kenneth J.
    NATURE REVIEWS CLINICAL ONCOLOGY, 2021, 18 (04) : 244 - 256
  • [27] Applying high-dimensional single-cell technologies to the analysis of cancer immunotherapy
    Satyen H. Gohil
    J. Bryan Iorgulescu
    David A. Braun
    Derin B. Keskin
    Kenneth J. Livak
    Nature Reviews Clinical Oncology, 2021, 18 : 244 - 256
  • [28] High-dimensional single-cell analysis reveals the immune signature of narcolepsy
    Hartmann, Felix J.
    Bernard-Valnet, Raphael
    Queriault, Clemence
    Mrdjen, Dunja
    Weber, Lukas M.
    Galli, Edoardo
    Krieg, Carsten
    Robinson, Mark D.
    Xuan-Hung Nguyen
    Dauvilliers, Yves
    Liblau, Roland S.
    Becher, Burkhard
    JOURNAL OF EXPERIMENTAL MEDICINE, 2016, 213 (12): : 2621 - 2633
  • [29] In vivo single-cell high-dimensional mass cytometry analysis to track the interactions between Klebsiella pneumoniae and myeloid cells
    Calderon-Gonzalez, Ricardo
    Dumigan, Amy
    Sa-Pessoa, Joana
    Kissenpfennig, Adrien
    Bengoechea, Jose A.
    PLOS PATHOGENS, 2024, 20 (04)
  • [30] SINGLE-CELL HIGH-DIMENSIONAL MASS CYTOMETRY (CYTOF) REVEALS IMMUNE LANDSCAPE OF PITUITARY NEUROENDOCRINE TUMORS
    Guo, Xiaopeng
    Chang, Mengqi
    Huang, Yongsheng
    Zhang, Fan
    Zhao, Yuanli
    Xing, Bing
    NEURO-ONCOLOGY, 2024, 26