Integration, exploration, and analysis of high-dimensional single-cell cytometry data using Spectre

被引:76
|
作者
Ashhurst, Thomas Myles [1 ,2 ,3 ,4 ]
Marsh-Wakefield, Felix [4 ,5 ,6 ]
Putri, Givanna Haryono [4 ,7 ]
Spiteri, Alanna Gabrielle [4 ,8 ]
Shinko, Diana [1 ,2 ,4 ]
Read, Mark Norman [4 ,7 ,9 ]
Smith, Adrian Lloyd [1 ,2 ,4 ]
King, Nicholas Jonathan Cole [1 ,2 ,3 ,4 ,8 ,10 ]
机构
[1] Centenary Inst, Charles Perkins Ctr, Sydney Cytometry Core Res Facil, Sydney, NSW, Australia
[2] Univ Sydney, Sydney, NSW, Australia
[3] Univ Sydney, Marie Bashir Inst Infect Dis & Biosecur, Sydney, NSW, Australia
[4] Univ Sydney, Charles Perkins Ctr, Sydney, NSW, Australia
[5] Univ Sydney, Fac Med & Hlth, Sch Med Sci, Sydney, NSW, Australia
[6] Univ Sydney, Dept Pathol, Vasc Immunol Unit, Sydney, NSW, Australia
[7] Univ Sydney, Sch Comp Sci, Sydney, NSW, Australia
[8] Univ Sydney, Fac Med & Hlth, Sch Med Sci, Viral Immunopathol Lab,Discipline Pathol, Sydney, NSW, Australia
[9] Univ Sydney, Westmead Initiat, Sydney, NSW, Australia
[10] Univ Sydney, Sydney Nano, Sydney, NSW, Australia
基金
英国医学研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
clustering; computational analysis; dimensionality reduction; FlowSOM; high‐ dimensional cytometry; mass cytometry; spectral cytometry; t‐ SNE; UMAP; MASS CYTOMETRY; FLOW; REVEALS; IMMUNE; VISUALIZATION;
D O I
10.1002/cyto.a.24350
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
As the size and complexity of high-dimensional (HD) cytometry data continue to expand, comprehensive, scalable, and methodical computational analysis approaches are essential. Yet, contemporary clustering and dimensionality reduction tools alone are insufficient to analyze or reproduce analyses across large numbers of samples, batches, or experiments. Moreover, approaches that allow for the integration of data across batches or experiments are not well incorporated into computational toolkits to allow for streamlined workflows. Here we present Spectre, an R package that enables comprehensive end-to-end integration and analysis of HD cytometry data from different batches or experiments. Spectre streamlines the analytical stages of raw data pre-processing, batch alignment, data integration, clustering, dimensionality reduction, visualization, and population labelling, as well as quantitative and statistical analysis. Critically, the fundamental data structures used within Spectre, along with the implementation of machine learning classifiers, allow for the scalable analysis of very large HD datasets, generated by flow cytometry, mass cytometry, or spectral cytometry. Using open and flexible data structures, Spectre can also be used to analyze data generated by single-cell RNA sequencing or HD imaging technologies, such as Imaging Mass Cytometry. The simple, clear, and modular design of analysis workflows allow these tools to be used by bioinformaticians and laboratory scientists alike. Spectre is available as an R package or Docker container. R code is available on Github ().
引用
收藏
页码:237 / 253
页数:17
相关论文
共 50 条
  • [11] Exploration of the personalized immune checkpoint atlas of plasma cell dyscrasias patients using high-dimensional single-cell analysis
    Tu, Chenggong
    Zheng, Yongjiang
    Zhang, Hui
    Wang, Jinheng
    ONCOLOGY REPORTS, 2020, 44 (01) : 224 - 240
  • [12] Toward High-Dimensional Single-Cell Analysis of Graphene Oxide Biological Impact: Tracking on Immune Cells by Single-Cell Mass Cytometry
    Orecchioni, Marco
    Bordoni, Valentina
    Fuoco, Claudia
    Reina, Giacomo
    Lin, Hazel
    Zoccheddu, Martina
    Yilmazer, Acelya
    Zavan, Barbara
    Cesareni, Gianni
    Bedognetti, Davide
    Bianco, Alberto
    Delogu, Lucia Gemma
    SMALL, 2020, 16 (21)
  • [13] Development, application and computational analysis of high-dimensional fluorescent antibody panels for single-cell flow cytometry
    Jolanda Brummelman
    Claudia Haftmann
    Nicolás Gonzalo Núñez
    Giorgia Alvisi
    Emilia M. C. Mazza
    Burkhard Becher
    Enrico Lugli
    Nature Protocols, 2019, 14 : 1946 - 1969
  • [14] Development, application and computational analysis of high-dimensional fluorescent antibody panels for single-cell flow cytometry
    Brummelman, Jolanda
    Haftmann, Claudia
    Nunez, Nicolas Gonzalo
    Alvisi, Giorgia
    Mazza, Emilia M. C.
    Becher, Burkhard
    Lugli, Enrico
    NATURE PROTOCOLS, 2019, 14 (07) : 1946 - 1969
  • [15] Single-cell high-dimensional imaging mass cytometry: one step beyond in oncology
    Glasson, Yael
    Chepeaux, Laure-Agnes
    Dume, Anne-Sophie
    Lafont, Virginie
    Faget, Julien
    Bonnefoy, Nathalie
    Michaud, Henri-Alexandre
    SEMINARS IN IMMUNOPATHOLOGY, 2023, 45 (01) : 17 - 28
  • [16] Imaging mass cytometry: High-dimensional and single-cell perspectives on the microenvironment of solid tumours
    Liu, Zehan
    Xun, Jing
    Liu, Shuangqing
    Wang, Botao
    Zhang, Aimin
    Zhang, Lanqiu
    Wang, Ximo
    Zhang, Qi
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2022, 175 : 140 - 146
  • [17] Single-cell high-dimensional imaging mass cytometry: one step beyond in oncology
    Yaël Glasson
    Laure-Agnès Chépeaux
    Anne-Sophie Dumé
    Virginie Lafont
    Julien Faget
    Nathalie Bonnefoy
    Henri-Alexandre Michaud
    Seminars in Immunopathology, 2023, 45 : 17 - 28
  • [18] Robust lineage reconstruction from high-dimensional single-cell data
    Giecold, Gregory
    Marco, Eugenio
    Garcia, Sara P.
    Trippa, Lorenzo
    Yuan, Guo-Cheng
    NUCLEIC ACIDS RESEARCH, 2016, 44 (14)
  • [19] High-Dimensional Single-Cell Cancer Biology
    Irish, Jonathan M.
    Doxie, Deon B.
    HIGH-DIMENSIONAL SINGLE CELL ANALYSIS: MASS CYTOMETRY, MULTI-PARAMETRIC FLOW CYTOMETRY AND BIOINFORMATIC TECHNIQUES, 2014, 377 : 1 - 21
  • [20] High-dimensional single-cell characterisation of the chronic lymphocytic leukaemia tumour microenvironment using imaging mass cytometry
    Woo, Timothy
    Buckley, Paul
    Mohamed, Hanna
    Chan, Julie
    Bishop, Cynthia
    Slonim, Liron Barnea
    Patten, Piers
    LEUKEMIA & LYMPHOMA, 2023, 64 : S80 - S81