Remote Vapor Detection and Classification Using Hyperspectral Images

被引:3
|
作者
Ayhan, Bulent [1 ]
Kwan, Chiman [1 ]
Jensen, James O. [2 ]
机构
[1] Signal Proc Inc, 9605 Med Ctr Dr 113E, Rockville, MD 20850 USA
[2] US Army, Edgewood Chem Biol Ctr, Aberdeen Proving Ground, MD 21010 USA
来源
CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XX | 2019年 / 11010卷
关键词
Chemical agents; remote detection; toxic gas; AIRIS; LWIR; wide area detector; hyperspectral image cube; FLUCTUATION; IDENTIFICATION;
D O I
10.1117/12.2518500
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Adaptive Infrared Imaging Spectroradiometer (AIRIS) is a longwave infrared (LWIR) sensor for remote detection of chemical agents such as nerve gas. AIRIS can be considered as a hyperspectral imager with 20 bands. In this paper, we present a systematic and practical approach to detecting and classifying chemical vapor from a distance. Our approach involves the construction of a spectral signature library of different vapors, certain practical preprocessing procedures, and the use of effective detection and classification algorithms. In particular, our preprocessing involves effective vapor signature extraction with adaptive background subtraction and normalization, and vapor detection and classification using Spectral Angle Mapper (SAM) technique, which is a signature-based target detection method for vapor detection. We have conducted extensive vapor detection analyses on AIRIS data that include TEP and DMMP vapors with different concentrations collected at different distances and times of the day. We have observed promising detection results both in low and high-concentrated vapor releases.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] THEMATIC CLASSIFICATION OF HYPERSPECTRAL IMAGES USING CONJUGACY INDICATOR
    Fursov, V. A.
    Bibikov, S. A.
    Bajda, O. A.
    COMPUTER OPTICS, 2014, 38 (01) : 154 - 158
  • [42] Classification of Hyperspectral Images Using Conventional Neural Networks
    V. I. Kozik
    E. S. Nezhevenko
    Optoelectronics, Instrumentation and Data Processing, 2021, 57 : 123 - 131
  • [43] Using OWA Fusion Operators for the Classification of Hyperspectral Images
    Alajlan, Naif
    Bazi, Yakoub
    AlHichri, Haikel S.
    Melgani, Farid
    Yager, Ronald R.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (02) : 602 - 614
  • [44] Camouflage Detection Using MWIR Hyperspectral Images
    Kumar, Vinay
    Ghosh, J. K.
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2017, 45 (01) : 139 - 145
  • [45] Hyperspectral Images-Based Crop Classification Scheme for Agricultural Remote Sensing
    Ali I.
    Mushtaq Z.
    Arif S.
    Algarni A.D.
    Soliman N.F.
    El-Shafai W.
    Computer Systems Science and Engineering, 2023, 46 (01): : 303 - 319
  • [46] A Noninvasive Cancer Detection Using Hyperspectral Images
    Gopi, Arun
    Reshmi, C. S.
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2017, : 2051 - 2055
  • [47] Camouflage Detection Using MWIR Hyperspectral Images
    Vinay Kumar
    J. K. Ghosh
    Journal of the Indian Society of Remote Sensing, 2017, 45 : 139 - 145
  • [48] Terrain Classification of Hyperspectral Remote Sensing Images Based on SC-KSDA
    Liu, Jing
    Li, Yinqiao
    Ye, Yue
    Liu, Yi
    ADVANCES IN NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, ICNC-FSKD 2022, 2023, 153 : 896 - 904
  • [49] A New SCAE-MT Classification Model for Hyperspectral Remote Sensing Images
    Chen, Huayue
    Chen, Ye
    Wang, Qiuyue
    Chen, Tao
    Zhao, Huimin
    SENSORS, 2022, 22 (22)
  • [50] BAND SELECTION BASED GAUSSIAN PROCESSES FOR HYPERSPECTRAL REMOTE SENSING IMAGES CLASSIFICATION
    Yao, Futian
    Qian, Yuntao
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 2845 - 2848