Remote Vapor Detection and Classification Using Hyperspectral Images

被引:3
|
作者
Ayhan, Bulent [1 ]
Kwan, Chiman [1 ]
Jensen, James O. [2 ]
机构
[1] Signal Proc Inc, 9605 Med Ctr Dr 113E, Rockville, MD 20850 USA
[2] US Army, Edgewood Chem Biol Ctr, Aberdeen Proving Ground, MD 21010 USA
来源
CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XX | 2019年 / 11010卷
关键词
Chemical agents; remote detection; toxic gas; AIRIS; LWIR; wide area detector; hyperspectral image cube; FLUCTUATION; IDENTIFICATION;
D O I
10.1117/12.2518500
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Adaptive Infrared Imaging Spectroradiometer (AIRIS) is a longwave infrared (LWIR) sensor for remote detection of chemical agents such as nerve gas. AIRIS can be considered as a hyperspectral imager with 20 bands. In this paper, we present a systematic and practical approach to detecting and classifying chemical vapor from a distance. Our approach involves the construction of a spectral signature library of different vapors, certain practical preprocessing procedures, and the use of effective detection and classification algorithms. In particular, our preprocessing involves effective vapor signature extraction with adaptive background subtraction and normalization, and vapor detection and classification using Spectral Angle Mapper (SAM) technique, which is a signature-based target detection method for vapor detection. We have conducted extensive vapor detection analyses on AIRIS data that include TEP and DMMP vapors with different concentrations collected at different distances and times of the day. We have observed promising detection results both in low and high-concentrated vapor releases.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Advances in semi-supervised classification of hyperspectral remote sensing images
    Yang X.
    Fang L.
    Yue J.
    National Remote Sensing Bulletin, 2024, 28 (01) : 19 - 41
  • [22] Semisupervised Classification of Hyperspectral Remote Sensing Images with Spatial Majority Voting
    Han, Deok
    Du, Qian
    Younan, Nicolas H.
    2016 9TH IAPR WORKSHOP ON PATTERN RECOGNITION IN REMOTE SENSING (PRRS), 2016,
  • [23] Classification methods for hyperspectral remote sensing images with weak texture features
    Wang, Yong
    Gu, Mengyu
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2024, 17 (03)
  • [24] DCT MFA Subspace Hyperspectral Remote Sensing Images Terrain Classification
    Liu, Jing
    Li, Meng-yan
    Liu, Yi
    2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017,
  • [25] Support vector machines for classification of hyperspectral remote-sensing images
    Melgani, F
    Bruzzone, L
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 506 - 508
  • [26] Improved Sequential Search Algorithms for Classification in Hyperspectral Remote Sensing Images
    Nakariyakul, Songyot
    OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY III, 2014, 9273
  • [27] Parsimonious Gaussian Process Models for the Classification of Hyperspectral Remote Sensing Images
    Fauvel, Mathieu
    Bouveyron, Charles
    Girard, Stephane
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (12) : 2423 - 2427
  • [28] Toward an optimal SVM classification system for hyperspectral remote sensing images
    Bazi, Yakoub
    Melgani, Farid
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (11): : 3374 - 3385
  • [29] Hyperspectral remote sensing images terrain classification in DCT SRDA subspace
    Liu Jing
    Liu Yi
    The Journal of China Universities of Posts and Telecommunications, 2015, (01) : 65 - 71
  • [30] Using hyperspectral remote sensing for land cover classification
    Zhang, W
    Sriharan, S
    MULTISPECTRAL AND HYPERSPECTRAL REMOTE SENSING INSTRUMENTS AND APPLICATIONS II, 2005, 5655 : 261 - 270