THEMATIC CLASSIFICATION OF HYPERSPECTRAL IMAGES USING CONJUGACY INDICATOR

被引:24
|
作者
Fursov, V. A. [1 ,2 ]
Bibikov, S. A. [1 ,2 ]
Bajda, O. A. [2 ]
机构
[1] Russian Acad Sci, Image Proc Syst Inst, Moscow, Russia
[2] Natl Res Univ, SP Korolyov Samara State Aerosp Univ, Samara, Russia
关键词
hyperspecter imagery; classification; specter angle mapper; conjugacy indicator;
D O I
10.18287/0134-2452-2014-38-1-154-158
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider an algorithm of hyperspectral images thematic classification using conjugacy indicator as a proximity measure. This measure is a generalized spectral angle mapper (SAM) implemented in hyperspectral imagery processing software ENVI. In this case, we use the cosine of an angle between considered vector and subspace, which is spanned by class vectors, instead of the cosine of an angle between considered vector and the mean vector of the class. Paper describes modification of a method based on partitioning of the class into subclasses and based on reduction of vectors to zero mean value. The results of synthetic experiments show higher classification quality than SAM.
引用
收藏
页码:154 / 158
页数:5
相关论文
共 50 条
  • [1] VEGETATION TYPE RECOGNITION IN HYPERSPECTRAL IMAGES USING A CONJUGACY INDICATOR
    Bibikov, S. A.
    Kazanskiy, N. L.
    Fursov, V. A.
    COMPUTER OPTICS, 2018, 42 (05) : 846 - 854
  • [2] Thematic classification with support subspaces in hyperspectral images
    Fursov, Vladimir Alekseyevich
    Bibikov, Sergey Alekseyevich
    Zherdev, Denis Alekseevich
    Kazanskiy, Nikolay Lvovich
    INTERNATIONAL JOURNAL OF ENGINEERING SYSTEMS MODELLING AND SIMULATION, 2020, 11 (04) : 186 - 193
  • [3] A Method for Hyperspectral Images Classification using Spectral Correlation
    Jing, Luo
    Fei, Hu
    Li Yun-lei
    Yue, Liu
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 9067 - 9072
  • [4] Segmentation and classification of hyperspectral images using watershed transformation
    Tarabalka, Y.
    Chanussot, J.
    Benediktsson, J. A.
    PATTERN RECOGNITION, 2010, 43 (07) : 2367 - 2379
  • [5] Remote Vapor Detection and Classification Using Hyperspectral Images
    Ayhan, Bulent
    Kwan, Chiman
    Jensen, James O.
    CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XX, 2019, 11010
  • [6] Efficient classification of the hyperspectral images using deep learning
    Simranjit Singh
    Singara Singh Kasana
    Multimedia Tools and Applications, 2018, 77 : 27061 - 27074
  • [7] Classification of Hyperspectral Images Using Conventional Neural Networks
    Kozik, V., I
    Nezhevenko, E. S.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2021, 57 (02) : 123 - 131
  • [8] Adaptive classification of hyperspectral images using local consistency
    Bian, Xiaoyong
    Zhang, Xiaolong
    Liu, Renfeng
    Ma, Li
    Fu, Xiaowei
    JOURNAL OF ELECTRONIC IMAGING, 2014, 23 (06)
  • [9] CLASSIFICATION OF HYPERSPECTRAL IMAGES USING SPECTRAL SPATIAL METHOD
    Rasikapriya, R.
    Thilagavathi, K.
    Vasuki, A.
    2017 INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION, EMBEDDED AND COMMUNICATION SYSTEMS (ICIIECS), 2017,
  • [10] Efficient classification of the hyperspectral images using deep learning
    Singh, Simranjit
    Kasana, Singara Singh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (20) : 27061 - 27074