THEMATIC CLASSIFICATION OF HYPERSPECTRAL IMAGES USING CONJUGACY INDICATOR

被引:24
|
作者
Fursov, V. A. [1 ,2 ]
Bibikov, S. A. [1 ,2 ]
Bajda, O. A. [2 ]
机构
[1] Russian Acad Sci, Image Proc Syst Inst, Moscow, Russia
[2] Natl Res Univ, SP Korolyov Samara State Aerosp Univ, Samara, Russia
关键词
hyperspecter imagery; classification; specter angle mapper; conjugacy indicator;
D O I
10.18287/0134-2452-2014-38-1-154-158
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider an algorithm of hyperspectral images thematic classification using conjugacy indicator as a proximity measure. This measure is a generalized spectral angle mapper (SAM) implemented in hyperspectral imagery processing software ENVI. In this case, we use the cosine of an angle between considered vector and subspace, which is spanned by class vectors, instead of the cosine of an angle between considered vector and the mean vector of the class. Paper describes modification of a method based on partitioning of the class into subclasses and based on reduction of vectors to zero mean value. The results of synthetic experiments show higher classification quality than SAM.
引用
收藏
页码:154 / 158
页数:5
相关论文
共 50 条
  • [11] Classification of Hyperspectral Images Using Conventional Neural Networks
    V. I. Kozik
    E. S. Nezhevenko
    Optoelectronics, Instrumentation and Data Processing, 2021, 57 : 123 - 131
  • [12] Using OWA Fusion Operators for the Classification of Hyperspectral Images
    Alajlan, Naif
    Bazi, Yakoub
    AlHichri, Haikel S.
    Melgani, Farid
    Yager, Ronald R.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (02) : 602 - 614
  • [13] DEEP FUSION OF HYPERSPECTRAL AND LIDAR DATA FOR THEMATIC CLASSIFICATION
    Chen, Yushi
    Li, Chunyang
    Ghamisi, Pedram
    Shi, Chunyu
    Gu, Yanfeng
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3591 - 3594
  • [14] Improved classification and segmentation of hyperspectral images using spectral warping
    Demir, B.
    Ertuerk, S.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (12) : 3657 - 3663
  • [15] UNSUPERVISED CLASSIFICATION OF HYPERSPECTRAL IMAGES BY USING LINEAR UNMIXING ALGORITHM
    Luo, Bin
    Chanussot, Jocelyn
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 2877 - 2880
  • [16] Classification of hyperspectral images using fusion of CNN and MiniGCN with SVM
    Wu, Wenbing
    Sadad, Tariq
    Safran, Mejdl
    Alfarhood, Sultan
    Yuan, Xiaojian
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2023, 16 (01) : 3601 - 3617
  • [17] Feature Extraction and Classification of Hyperspectral Images Using Hierarchical Network
    Gao, Yanlong
    Feng, Yan
    Yu, Xumin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (02) : 287 - 291
  • [18] Varietal Classification of Rice Seeds Using RGB and Hyperspectral Images
    Fabiyi, Samson Damilola
    Vu, Hai
    Tachtatzis, Christos
    Murray, Paul
    Harle, David
    Dao, Trung Kien
    Andonovic, Ivan
    Ren, Jinchang
    Marshall, Stephen
    IEEE ACCESS, 2020, 8 : 22493 - 22505
  • [19] Classification of Hyperspectral Images Using Subspace Projection Feature Space
    Aghaee, Reza
    Mokhtarzade, Mehdi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (09) : 1803 - 1807
  • [20] CLASSIFICATION OF BRAIN TISSUES IN HYPERSPECTRAL IMAGES USING VISION TRANSFORMERS
    Cruz-Guerrero, Ines A.
    Mendoza-Chavarria, Juan N.
    Campos-Delgado, Daniel U.
    Fabelo, Himar
    Ortega, Samuel
    Marrero Callico, Gustavo
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,