THEMATIC CLASSIFICATION OF HYPERSPECTRAL IMAGES USING CONJUGACY INDICATOR

被引:24
|
作者
Fursov, V. A. [1 ,2 ]
Bibikov, S. A. [1 ,2 ]
Bajda, O. A. [2 ]
机构
[1] Russian Acad Sci, Image Proc Syst Inst, Moscow, Russia
[2] Natl Res Univ, SP Korolyov Samara State Aerosp Univ, Samara, Russia
关键词
hyperspecter imagery; classification; specter angle mapper; conjugacy indicator;
D O I
10.18287/0134-2452-2014-38-1-154-158
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider an algorithm of hyperspectral images thematic classification using conjugacy indicator as a proximity measure. This measure is a generalized spectral angle mapper (SAM) implemented in hyperspectral imagery processing software ENVI. In this case, we use the cosine of an angle between considered vector and subspace, which is spanned by class vectors, instead of the cosine of an angle between considered vector and the mean vector of the class. Paper describes modification of a method based on partitioning of the class into subclasses and based on reduction of vectors to zero mean value. The results of synthetic experiments show higher classification quality than SAM.
引用
收藏
页码:154 / 158
页数:5
相关论文
共 50 条
  • [31] Effects of Compression on the Classification of Hyperspectral Images
    Choi, Euisun
    Lee, Sangwook
    Lee, Chulhee
    NEW ASPECTS OF SYSTEMS, PTS I AND II, 2008, : 541 - +
  • [32] MAHALANOBIS KERNEL FOR THE CLASSIFICATION OF HYPERSPECTRAL IMAGES
    Fauvel, M.
    Villa, A.
    Chanussot, J.
    Benediktsson, J. A.
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 3724 - 3727
  • [33] Multidomain Subspace Classification for Hyperspectral Images
    Zhang, Liangpei
    Zhu, Xiaojie
    Zhang, Lefei
    Du, Bo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 6138 - 6150
  • [34] Compression and classification methods for hyperspectral images
    Kaarna A.
    Toivanen P.
    Keränen P.
    Pattern Recognition and Image Analysis, 2006, 16 (3) : 413 - 424
  • [35] Accelerating Classification Time in Hyperspectral Images
    Toker, Kemal Gurkan
    Yuksel, Seniha Esen
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 2126 - 2129
  • [36] A Probabilistic Method for the Classification of Hyperspectral Images
    Kutluk, Sezer
    Kayabol, Koray
    Akan, Aydin
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 905 - 908
  • [37] Scattering transforms and classification of hyperspectral images
    Czaja, Wojciech
    Kavalerov, Ilya
    Li, Weilin
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXIV, 2018, 10644
  • [38] Superpixel Based Classification of Hyperspectral Images
    Cakmak, Mehtap
    Cezairlioglu, Kubra
    Erturk, Sarp
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 2486 - 2488
  • [39] Segmentation and classification of hyperspectral images using CHV pattern extraction grid
    Gopalan, Gokulakrishnan
    Govindarajan, Tholkappia Arasu
    SOFT COMPUTING, 2018, 22 (05) : 1475 - 1490
  • [40] Classification of hyperspectral remote sensing images using frequency spectrum similarity
    WANG Ke
    GU XingFa
    YU Tao
    MENG QingYan
    ZHAO LiMin
    FENG Li
    Science China(Technological Sciences), 2013, 56 (04) : 980 - 988