Remote Vapor Detection and Classification Using Hyperspectral Images

被引:3
|
作者
Ayhan, Bulent [1 ]
Kwan, Chiman [1 ]
Jensen, James O. [2 ]
机构
[1] Signal Proc Inc, 9605 Med Ctr Dr 113E, Rockville, MD 20850 USA
[2] US Army, Edgewood Chem Biol Ctr, Aberdeen Proving Ground, MD 21010 USA
关键词
Chemical agents; remote detection; toxic gas; AIRIS; LWIR; wide area detector; hyperspectral image cube; FLUCTUATION; IDENTIFICATION;
D O I
10.1117/12.2518500
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Adaptive Infrared Imaging Spectroradiometer (AIRIS) is a longwave infrared (LWIR) sensor for remote detection of chemical agents such as nerve gas. AIRIS can be considered as a hyperspectral imager with 20 bands. In this paper, we present a systematic and practical approach to detecting and classifying chemical vapor from a distance. Our approach involves the construction of a spectral signature library of different vapors, certain practical preprocessing procedures, and the use of effective detection and classification algorithms. In particular, our preprocessing involves effective vapor signature extraction with adaptive background subtraction and normalization, and vapor detection and classification using Spectral Angle Mapper (SAM) technique, which is a signature-based target detection method for vapor detection. We have conducted extensive vapor detection analyses on AIRIS data that include TEP and DMMP vapors with different concentrations collected at different distances and times of the day. We have observed promising detection results both in low and high-concentrated vapor releases.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Classification of hyperspectral remote sensing images using frequency spectrum similarity
    WANG Ke
    GU XingFa
    YU Tao
    MENG QingYan
    ZHAO LiMin
    FENG Li
    Science China(Technological Sciences), 2013, 56 (04) : 980 - 988
  • [2] Classification of hyperspectral remote sensing images using frequency spectrum similarity
    Wang Ke
    Gu XingFa
    Yu Tao
    Meng QingYan
    Zhao LiMin
    Feng Li
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2013, 56 (04) : 980 - 988
  • [3] Classification of hyperspectral remote sensing images using frequency spectrum similarity
    Ke Wang
    XingFa Gu
    Tao Yu
    QingYan Meng
    LiMin Zhao
    Li Feng
    Science China Technological Sciences, 2013, 56 : 980 - 988
  • [4] On the parallel classification system using hyperspectral images for remote sensing applications
    Garcia-Salgado, Beatriz P.
    Ponomaryov, Volodymyr I.
    Robles-Gonzalez, Marco A.
    Sadovnychiy, Sergiy
    REAL-TIME IMAGE AND VIDEO PROCESSING 2018, 2018, 10670
  • [5] Classification of hyperspectral remote sensing images using frequency spectrum similarity
    WANG Ke
    GU XingFa
    YU Tao
    MENG QingYan
    ZHAO LiMin
    FENG Li
    Science China(Technological Sciences), 2013, (04) : 980 - 988
  • [6] Border vector detection and adaptation for classification of multispectral and hyperspectral remote sensing images
    Kasapoglu, N. Goekhan
    Ersoy, Okan K.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (12): : 3880 - 3893
  • [7] Classification of hyperspectral remote-sensing images using discriminative linear projections
    Weizman, Lior
    Goldberger, Jacob
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (21) : 5605 - 5617
  • [8] Hyperspectral Remote Sensing Images Classification Using Fully Convolutional Neural Network
    Tun, Nyan Linn
    Gavrilov, Alexander
    Tun, Naing Min
    Trieu, Do Minh
    Aung, Htet
    PROCEEDINGS OF THE 2021 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (ELCONRUS), 2021, : 2166 - 2170
  • [9] COMBINER OF CLASSIFIERS USING GENETIC ALGORITHM FOR CLASSIFICATION OF REMOTE SENSED HYPERSPECTRAL IMAGES
    Santos, A. B.
    Araujo, A. de A.
    Menotti, D.
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 4146 - 4149
  • [10] TEXTURE AND SHAPE FEATURES FOR GRASS WEED CLASSIFICATION USING HYPERSPECTRAL REMOTE SENSING IMAGES
    Farooq, Adnan
    Jia, Xiuping
    Zhou, Jun
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 7208 - 7211